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A B S T R A C T   

The construction industry generates a substantial volume of solid waste, often destinated for landfills, causing 
significant environmental pollution. Waste recycling is decisive in managing waste yet challenging due to labor- 
intensive sorting processes and the diverse forms of waste. Deep learning (DL) models have made remarkable 
strides in automating domestic waste recognition and sorting. However, the application of DL models to 
recognize the waste derived from construction, renovation, and demolition (CRD) activities remains limited due 
to the context-specific studies conducted in previous research. This paper aims to realistically capture the 
complexity of waste streams in the CRD context. The study encompasses collecting and annotating CRD waste 
images in real-world, uncontrolled environments. It then evaluates the performance of state-of-the-art DL models 
for automatically recognizing CRD waste in-the-wild. Several pre-trained networks are utilized to perform 
effectual feature extraction and transfer learning during DL model training. The results demonstrated that DL 
models, whether integrated with larger or lightweight backbone networks can recognize the composition of CRD 
waste streams in-the-wild which is useful for automated waste sorting. The outcome of the study emphasized the 
applicability of DL models in recognizing and sorting solid waste across various industrial domains, thereby 
contributing to resource recovery and encouraging environmental management efforts.   

1. Introduction 

The construction sector, known for its substantial consumption of 
building materials, contributes significantly to industrial production 
(Abina et al., 2022; Oluleye et al., 2022). Consequently, raw materials 
are consumed more, while a significant amount of waste is generated 
because of extensive destruction and reconstruction of buildings (Galvín 
et al., 2023; Y. C. Zhang et al., 2022). Construction, renovation, and 
demolition (CRD) waste contains a variety of different materials that are 
commonly used in construction, including but not limited to timber, 
concrete, bricks, aggregates, rubbles and rocks, soil and sand, steel, 
glass, asphalt, plastic, gypsum (plasterboards), ceramics, cardboard, 
fabric, and organic matter. These materials are often mixed in a het
erogeneous manner, making waste processing and management more 

challenging (Abina et al., 2022; Islam et al., 2019; Laadila et al., 2021). 
Most of the solid waste generated by the construction industry is 
disposed of in landfills, which causes significant environmental pollu
tion and incurs financial costs for transportation and levies (Dalal et al., 
2023; Qiao et al., 2022). The landfill-based solid waste disposal con
tributes to both a shortage of available landfills and an escalation of 
resource depletion (C. Y. Zhang et al., 2022). Hence, efficient manage
ment of CRD waste can reduce waste sent to landfills, minimize envi
ronmental impacts, and ensure the management of natural resources. 

Waste recycling and resource recovery are widely acknowledged in 
the circular economy as practical approaches to mitigate the impact of 
waste generation on the environment (Josa et al., 2023; Lakhouit et al., 
2023). In this framework, the waste is transformed into raw materials for 
subsequent processes in an economically efficient manner (Kurniawan 
et al., 2023). This includes collecting, sorting, and reprocessing waste, 
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manufacturing new products, and generating energy from waste. 
Recycling and market demand for recycled products seem to be strongly 
influenced by geography and pricing strategies (Sustainability-Victoria, 
2020). Disposing of heavy or oversized materials in landfills will cost 
more than other materials, especially when an appropriate disposal 
pricing structure that may include a levy (CDW-SR, 2011). Conse
quently, specific construction materials are given priority for recycling 
and have created a market for building materials and products derived 
from CRD waste (see supplementary material: Tables S–1). Despite the 
recycling market for CRD waste materials being significant, recyclers 
and material recovery facilities (MRFs) face challenges in sorting waste. 
The conventional sorting of CRD waste at MRFs heavily relies on manual 
labor (see supplementary material: Figure S-1), which is limited due to 
the mixed nature of waste, where a large proportion of unsorted waste is 
disposed of in landfills (Qiao et al., 2022; Runsewe et al., 2023). The 
drawbacks of this process include safety and health risks to workers as 
they engage in the daily picking of (contaminated) waste, expensive 
labor costs, time-consuming processes, space requirements, and the 
nature of CRD waste streams which are often bulky, heavy, and in mixed 
composition. Organizations increasingly invest in mixed waste man
agement in response to increased landfill disposal costs and ecological 
issues (AMP-robotics, 2023; Song et al., 2023). Consequently, the 
recycling industry demands automation to assist with separating mixed 
CRD waste to overcome the difficulties in conventional waste sorting 
methods. 

Waste sorting is considered a crucial aspect of waste management, as 
the accuracy of waste sorting influences the quality of recycled materials 
(Bashkirova et al., 2022). Automated waste sorting (i.e., utilizing, 
cameras, sensors, and robotic arms) offers the advantage of efficient and 
continuous operation, eliminating health risks to laborers. The auto
mated sorting process involves two main stages; 1. the initial classifi
cation of waste into specific categories, and 2. the subsequent 
mechanical sorting of the waste based on its material composition (Satav 
et al., 2023). The integration of computer vision (CV), artificial intelli
gence (AI), and automation systems enhances both the efficiency and 
precision of waste sorting (Lu and Chen, 2022). These methods require 
precise data on the composition of mixed waste (Lu et al., 2022). The 
emergence of deep learning (DL) has led to significant advancements in 
CV and DL-based models in CV have demonstrated remarkable capa
bilities in recognizing and localizing objects of specific interest within 

images (Arashpour et al., 2021; Chen et al., 2023; Dang et al., 2022). 
This progress shows potential for recognizing the composition of mixed 
waste streams. Many DL algorithms are available, among which con
volutional neural networks (CNNs) have demonstrated outstanding 
performance in image recognition and classification, resembling the 
human visual processing system (Wang et al., 2016). They can perform 
various object recognition tasks, including image classification, object 
detection, and image segmentation (Lu and Chen, 2022). Image classi
fication assigns labels to entire images, while object detection estimates 
object locations using bounding boxes. In contrast, image segmentation 
assigns class labels to individual pixels within an image (Hadinata et al., 
2023). Semantic segmentation can provide spatial geometry of ‘objects’ 
and ‘stuff’ by labelling each pixel in the image with respect to the 
designated category (Wang et al., 2021). This helps to detect and 
identify waste materials in cluttered settings as it can provide 
fine-grained pixel-level information on boundaries (Dong et al., 2022). 

With the advent of DL approaches, there has been an increased focus 
on addressing waste management problems by developing image 
recognition systems for waste classification and automated waste sorting 
(Dong et al., 2022; Zhang et al., 2021). They are increasingly utilized for 
waste classification and detection, predominantly in domestic waste 
sorting. ResortIT (Koskinopoulou et al., 2021), TACO (Proença and 
Simões, 2020), and Trashnet (Yang and Thung, 2016) are popular 
open-source datasets for domestic solid waste detection. The DL models 
trained on these datasets have been constrained to classifying or 
detecting individual waste objects presented in comparatively 
controlled environments or based on synthetic images that do not 
accurately reflect the complexity of the real world. ZeroWaste is the first 
publicized in-the-wild dataset for industrial waste detection that can be 
utilized in automatic waste sorting (Bashkirova et al., 2022). This 
dataset presents a challenging real-life problem of detecting highly 
deformable objects in heavily cluttered scenes. Nonetheless, the dataset 
only detects paper, plastic, metal, and glass. Applying these models to 
CRD waste recognition is challenging due to the heterogeneous nature of 
waste derived from CRD activities. 

Several recent studies have implemented DL-based models for con
struction waste recognition in diverse study contexts. Sun and Gu (2022) 
have implemented various CNN models to classify construction mate
rials using images of buildings made up of different materials. Ku et al. 
(2021) and Demetriou et al. (2023) have employed single-stage and 
two-stage detection algorithms to detect construction and demolition 
waste objects for sorting. The datasets contain small pieces (samples) of 
waste placed on conveyor belts. Moreover, instance segmentation al
gorithms were trained; to recognize construction waste using images of 
waste dumps/collected through web scraping (Na et al., 2022); and to 
detect boundaries for grasping waste objects using images of waste ob
jects captured at construction sites (Chen et al., 2022). Only a handful of 
studies (Davis et al., 2021; Lu et al., 2022) have considered the cluttered 
nature of construction waste but in relatively controlled environments. 
Davis et al. (2021) proposed a method to classify construction materials 
(single and mixed) using VGGnet architecture. The study captured waste 
images deposited in a construction site bin which is an artefact designed 
for the study. Lin et al. (2022) also proposed a DL-based method to 
classify construction and demolition waste using VGG network struc
tures. The dataset includes images of single-type of waste that do not 
reflect the mixed nature of waste. Lu et al. (2022) proposed a semantic 
segmentation model to recognize the composition of construction waste 
in cluttered backgrounds using state-of-the-art DeepLabv3+ network 
architecture. The dataset consists of images featuring waste-containing 
trucks captured from the viewpoint of a weighbridge. The same data
set was utilized by Dong et al. (2022) to improve waste recognition using 
Transformer architecture. It can be presumed that the datasets utilized 
in previous studies are tailored to the respective study domains, hence 
significantly impacting the performance of DL models on waste recog
nition limiting their comparability. 

This study collected and annotated real-world images of CRD waste 

Nomenclature 

ASPP - Atrous Spatial Pyramid Pooling 
CNN - Convolutional Neural Network 
CRD - Construction, Renovation, and Demolition 
CV - Computer Vision 
DL - Deep Learning 
DNN - Deep Neural Network 
FLOPS - Floating-Point Operations Per Second 
fwIoU - frequency-weighted Intersection over Union 
GPU - Graphics Processing Unit 
IoU - Intersection over Union 
MRFs - Material Recovery Facilities 
PVC - Polyvinyl Chloride 
RAM - Random Access Memory 
RegNet - Regular Network 
ResNet - Residual neural Network 
RGB - Red, Green, and Blue 
RTX - Ray Tracing Texel eXtreme (a visual computing 

platform created by NVIDIA) 
TACO - Trash Annotations in Context Dataset 
VGG - Visual Geometry Group  
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captured in uncontrolled environments. The images contained mixed 
CRD waste deposited in skip bins at real construction sites. Hence, the 
dataset employed in this research represents the authentic site scenario 
that signifies the realistic complexity of waste in the CDR context. 
Consequently, the study implemented several state-of-the-art DL net
works to perform segmentation for automatic recognition of CRD waste 
in-the-wild to facilitate automated waste sorting. The networks were 
trained with different pre-trained backbone networks as it allows to 
leverage knowledge gained from a large dataset to improve the perfor
mance of a specific task, even with limited data (Tajbakhsh et al., 2016). 
Pre-trained backbones are often trained on massive datasets and learned 
to extract meaningful features from images. This will reduce the efforts 
of training a complex feature extractor from scratch (Tan et al., 2022). 
Many layers of pre-trained backbones have already learned low-level 
features like edges and textures. This helps in fine-tuning models for 
specific tasks (Qayyum et al., 2023). These advancements have greatly 
improved the accuracy and effectiveness of image analysis and 

understanding tasks in CV. The complexity and computational capacity 
of each backbone network assist in comparing the performance of DL 
models for various applications in practice. The outcomes of the study 
demonstrate the ability of DL models to recognize the composition of 
CRD waste in-the-wild. This method can be integrated into automated 
waste sorting for better-quality waste recycling and resource recovery. 
These efforts will reduce the large amounts of waste going to landfills 
and consequently, minimize the associated environmental, health, and 
financial burdens. Moreover, the study quantified the raw carbon 
emissions during the training of DL models in this study. 

2. Materials and methods 

2.1. Workflow of training DL models for CRD waste recognition 

Fig. 1 illustrates a representative workflow that can be used to 
implement DL models for automated waste recognition. 

Fig. 1. Workflow of training DL models for CRD waste recognition.  
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The workflow commences by creating a suitable dataset. To maintain 
the quality of the dataset by preserving object boundaries, low- 
resolution images can be excluded during the pre-processing stage. 
Data annotation is then performed as the subsequent step (see section 
2.2 for more details). The dataset is divided into three subsets: training, 
validation, and testing, allowing for comprehensive model evaluation. 
Afterwards, the model is trained using the training dataset. The data 
augmentation techniques can be employed to expand the training 
dataset and to prevent overfitting. The performance of the trained model 
is assessed using the validation dataset, primarily focusing on the ac
curacy of the predicted segmentation masks generated during inference. 
Measurable performance metrics can be utilized to evaluate the seg
mentation accuracy (Ulku and Akagündüz, 2022). DNNs involve various 
hyperparameters that significantly impact the model performance. 
These hyperparameters include the pre-trained network backbones, 
learning rate, batch size, momentum, weight decay, and the number of 
epochs. Optimizing these parameters ensures that the model operates at 
its highest potential and produces satisfactory results (Arashpour, 
2023). Hence, it is crucial to fine-tune and adjust these parameters to 
obtain the optimal model with the best possible model performance. 
Finally, the testing dataset, which remains unseen by the model during 
training, is used to assess the segmentation performance of the opti
mized model. 

2.2. CRD waste dataset 

Building a comprehensive and diverse collection of images is 
essential for training a DL model. Preparing such a dataset is a critical 
task requiring significant time and effort (Wu et al., 2023). Currently, no 
publicly available dataset includes images of CRD waste in-the-wild. 
Thus, the study collected 430 images of skip bins with mixed CRD 
waste from various construction sites. These images represent realistic 
scenarios of mixed waste materials commonly found in construction, 
renovation, and demolition activities. Fig. 2(a) provides a glimpse of the 
dataset by presenting a few sample images. Waste materials (objects and 
stuff) in the dataset are manually annotated by the authors for semantic 
segmentation using an open-source annotation tool. The average time 
spent on annotating an image was around 25 min. Data annotation 
involved tracing polygons around the profiles of different waste mate
rials and assigning them to their respective waste categories using 
distinct colors. Each pixel within the images is assigned a category label 
based on the annotated information as provided in Table 1. This process 
ensures that each image pixel is assigned to the respective waste cate
gory, enabling differentiation from other objects, stuff, or the back
ground. As a result, a pixel mask, representing the ground truth labels, 
was generated for each image, as shown in Fig. 2(b). The features that 
are not subjected to annotation were visually represented in black 

Fig. 2. CRD waste dataset: (a) Source images, (b) Ground-truth images and (c) Pixel-wise representation of waste classes in the dataset.  
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within the generated segmentation masks. This color differentiation 
enhances the interpretability of the segmentation results, effectively 
highlighting the annotated categories while visually distinguishing them 
from the unannotated regions. The dataset includes the original images 
and their respective ground-truth labels and is divided into three sub
sets: training, validation, and testing. These subsets are allocated in 
proportions of 75%, 15%, and 10% of the dataset. A detailed breakdown 
of the total number of pixels represented in each data split can be found 
in Fig. 2(c). The study focuses on common CRD waste categories and 
employs a bin for annotating the data, as given in Table 1. 

2.3. Segmentation models for CRD waste recognition 

U-Net (Ronneberger et al., 2015) and DeepLabv3+ (Chen et al., 
2018) are popular CNNs that have found extensive applications in 
diverse segmentation tasks due to their flexibility in use across various 
domains (Hadinata et al., 2023). U-Net is widely used in medical image 
segmentation tasks (Lee et al., 2022; Peiris et al., 2023), and not have 
been used in construction waste segmentation to the best of the author’s 
knowledge. However, DeepLabv3+ has been used in the study con
ducted by Lu et al. (2022) for construction waste segmentation using 
ResNet and Xception as backbone networks. Our study implements 
U-Net and DeepLabv3+ CNN models for the segmentation of CRD waste 
using our dataset. 

The U-Net architecture is structured as an encoder-decoder system, 
where the encoder captures the overall context of the image by pro
gressively reducing the image size and increasing its depth using con
volutional and max-pooling layers. In contrast, the decoder restores this 
information to its original pixel location by up-sampling the image using 
transposed convolution layers. The skip connections are employed in the 
decoder to enhance the up-sampling process. These connections 
concatenate the feature maps from the encoder with the output of the 
transposed convolution layers. The feature maps contain the original 
spatial information lost during the compression in the encoder, assisting 
the decoder in generating a more precise segmentation result. Deep
Labv3+ also employs an encoder-decoder structure with atrous spatial 

pyramid pooling (ASPP) to segment objects semantically. The encoder 
extracts rich contextual semantic information while the decoder obtains 
detailed object boundaries. The ASPP helps integrate a larger context of 
feature maps without increasing the parameters. The network backbone 
does initial feature extraction based on the CNN structure, while ASPP 
extracts features at different rates based on the feature maps generated 
by the backbone. The decoder’s ASPP output is up-sampled and 
concatenated with low-level features retrieved from the backbone. It 
refines the object boundaries and generates segmentation masks. As the 
final step in the process, the output feature map is up-sampled to match 
the resolution of the original input. 

To evaluate the segmentation performance of U-Net and Deep
Labv3+ models, several pre-trained backbone networks were utilized. 
These include ResNet-101 (He et al., 2016), RegNetX-1.6 (Radosavovic 
et al., 2020) and MobileOne-S3 (Vasu et al., 2023) (see Supplementary 
Material Tables S–2 for backbone network metrics). ResNet-101 is a 
widely used CNN architecture that belongs to the ResNet (Residual 
Network) family, which has 101 layers, making it deeper and more 
complex compared to its predecessors. ResNet-101 strikes a balance 
between depth and efficiency that allows to capture of complex features 
while maintaining a manageable level of computational complexity. The 
skip connections (residual connections) in ResNet-101 help mitigate the 
vanishing gradient problem, making it easier for the model to be trained 
effectively (He et al., 2016). The RegNet (Regular Network) family in
cludes various network configurations, each characterized by different 
levels of depth, width, and computational complexity. The key innova
tion behind RegNet is the study of a large design space to identify 
network configurations that offer a better trade-off between model 
performance and computational efficiency. MobileOne is a recently 
introduced lightweight network that introduces re-parameterization 
branches and replaces convolutions with depth-wise and point-wise 
convolutions. The re-parametrization of MobileOne versions is suitable 
for embedded devices as it achieves good accuracy at reduced latency 
compared to the other state-of-the-art encoder architectures (Vasu et al., 
2023). 

2.4. Performance metrics 

Performance measurement of segmentation can be complicated 
because it involves determining pixel-level class labels and finding the 
correct pixels that enclose the object. The models’ performance is 
assessed by evaluating the segmentation accuracy of predicted outputs 
using the following metrics. Generally, a higher metric indicates a 
higher level of segmentation accuracy. A maximum of 100 in each 
metric signifies that the predicted waste composition aligns perfectly 
with the ground truth image (Ulku and Akagündüz, 2022). 

Frequency-weighted intersection over union (fwIoU): The 
intersection over union (IoU) is calculated by dividing the ground truth 
by the intersection of the pixel-wise classification results. The fwIoU 
weights classes according to their appearance frequency in the dataset 
by utilizing the total number of pixels labelled as classes. The formula of 
fwIoU can be defined by Equation (1). 

fwIoU =
1

∑k

j=1
tj

∑k

j=1

njj

nij + nji + njj
(i∕= j), (1)  

where nij represents the number of pixels that are labelled as class i but 
are classified as class j. Conversely, nji denotes the number of pixels 
labelled as class j but classified as class i. The value of njj indicates the 
number of pixels correctly labelled and classified as class j. Further, tj 
presents the total number of pixels that are correctly labelled as class j, 
and k denotes the total number of distinct classes being considered. 

mPA: Pixel accuracy calculates the ratio of correctly classified pixels 
on a per-class basis and mean pixel accuracy (mPA) evaluates the per
formance of semantic segmentation globally across all classes. This is 

Table 1 
CRD waste categories.  

CRD waste 
category 

Label Description of the category Color 

Concrete and 
Aggregates 

CA concrete/bricks/tiles/ceramic/rock/ 
excavated stone/gravel/aggregate/rubble/ 
soil/sand 

Wood and 
Timber 

WT wood/timber (processed wood)/particle 
board 

Hard Plastic HP High-Density Polyethylene (HDPE)/ 
Polyvinyl Chloride (PVC) 

Soft Plastic SP Low-Density Polyethylene (LDPE)/ 
Polyethylene Terephthalate (PET or PETE 
or Polyester)/Polystyrene (PS) (creased in 
irregular patterns) 

Steel ST ferrous and non-ferrous, including 
aluminium, stainless steel, copper piping/ 
wire, etc. 

Cardboard and 
Paper 

CP anything made from cardboard and paper 
(corrugated cardboard, paper bags, boxes) 

Mixed MIX Mixed waste comprised of plasterboard, 
sheet glass/laminated glass, carpets/ 
cushions/fabric/leather 

Skip Bin BIN The containers where the mixed waste is 
deposited at construction sites 
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calculated as in Equation (2). 

mPA=
1
k

∑k

j=1

njj

tj
(i∕= j), (2)  

3. Results and discussion 

In this study, U-net and DeepLabv3+ segmentation models are 
implemented in PyTorch utilizing an NVIDIA RTX A5500 GPU with 24 
GB RAM. The segmentation models were trained and finetuned for 500 
epochs with batch size of 4. For training the segmentation networks, the 
study employed the stochastic gradient descent optimizer with a 
learning rate of 0.01 and a momentum of 0.9. To compensate for a 
relatively limited number of images in the training set and to avoid 
overfitting, data augmentation techniques were used. As described in 
the workflow (see section 2.1), hyperparameter tuning was conducted to 
obtain the optimal models. Accordingly, the models were trained and 
calibrated using the training and validation sets and subsequently 
evaluated using the test dataset. 

The CRD waste dataset described in section 2.2 is used to train the 
segmentation models. The segmentation models take RGB images as 
input and normalize them using standard deviation. The images are pre- 
processed and resized to 1024 x 1024 pixels after normalization. The 
segmentation models use color information to label the segmented im
ages in the output. Each pixel in the segmented images is mapped to its 
respective label with the designated color. The models store the color 
information as variables for each category according to the index value 
assigned by the trained model. For example, as in this study, the color 
variables store [0, 0, 128] for Wood and Timber (WT) and [0, 128, 0] for 
Concrete and Aggregates (CA). The model then predicts the output 
masks with segmented waste labelled with the assigned colors of their 
respective waste categories. 

Mean intersection over union is the primary metric used to assess the 
accuracy of multi-class segmentation tasks (Ulku and Akagündüz, 
2022). However, when dealing with imbalanced datasets, there is a risk 
of the trained model favoring majority classes and performing poorly on 
minority classes. Hence, this study implemented proportional class 
weights, which assign different weights to each class based on the fre
quency of the class regions in the dataset. This approach can mitigate the 
negative impact of dataset imbalance on model performance to a certain 
extent based on their pixel-wise representation in the dataset. Accord
ingly, the performance of segmentation models is evaluated using 
fwIoU. In addition, the mPA is used as an alternative metric to evaluate 
the segmentation accuracy of the models. The quantitative results of 
model training are presented in Table 2 and Fig. 3(a)-(c). Fig. 3(a) shows 
the segmentation accuracies of DeepLabv3+ and U-Net models with 
ResNet-101, RegNetX-1.6 and MobileOne-S3 backbone networks. The 
results indicate that both U-Net and DeepLabv3+ models achieve com
parable performances in CRD waste segmentation. The DeepLabv3+
attains the highest segmentation accuracy with ResNet-101 backbone 

which are 0.74 of fwIoU and 0.84 of mPA. ResNet-101 has a consider
ably larger parameter count than RegNetX-1.6 and MobileOne-S3. 
However, the performance of the DeepLabv3+ model with lightweight 
network backbones remains satisfactory, considering a 3% and 1% ac
curacy drops in fwIoU and mPA respectively. Similarly, the U-Net seg
mentation model attains its highest accuracy with the ResNet-101 
backbone, reporting 0.74 for fwIoU and 0.85 for mPA. However, this 
accuracy is only marginally higher, at 2% of fwIoU and 1–2% of mPA, 
than that achieved with lightweight backbones. These findings indicate 
that DeepLabv3+ and U-Net models exhibit comparable performance 
when utilizing the ResNet-101 backbone network, while maintaining a 
reasonable level of accuracy with lighter backbones. Such results pro
vide valuable insights for selecting the most suitable segmentation 
model based on computational constraints and the specific applications 
in CRD waste recognition. 

Fig. 3(b) and (c) presents the IoU values corresponding to each waste 
category and the confusion matrices of optimal models respectively on 
the test dataset (confusion matrices of model trained with RegNetX-1.6 
and MobileOne-S3 are provided in supplementary materials: see 
Figure S-2). These provides insights into the performance of segmenta
tion models in recognizing different waste materials within the CRD 
context. The skip bin segmentation yields the highest accuracy, reaching 
0.9 (IoU) and 0.95 (PA) in both models. With respect to waste categories, 
excluding hard plastic (HP), steel (ST), and mixed (MIX), all others 
achieved IoU and PA scores exceeding 0.57 and 0.69 respectively. These 
are commendable values given the diverse and complex nature of waste 
streams. Concrete and aggregates (CA) appear as the second-best cate
gory across all cases, with IoU above 0.74 and PA above 0.86. Following 
closely are soft plastic (SP), wood and timber (WT), and cardboard (CP), 
reporting IoU scores between 0.6 and 0.7 to the nearest values. On the 
other hand, HP, ST, and MIX had lower scores, ranging from 0.4 to 0.5 of 
IoU, mainly due to category imbalance, where these less accurately 
predicted classes have fewer pixels represented in the dataset (see Fig. 2 
(c)). Nevertheless, both segmentation models performed satisfactorily 
across most classes whereas, the classes with limited labelled data were 
not accurately segmented, even with larger backbone networks. 

Providing a qualitative representation of segmentation outcomes, 
Figure (4) illustrates the results obtained from DeepLabv3+ and U-Net 
models trained with three backbone networks. The segmentation masks 
generated for images containing mixed construction waste materials 
exhibit distinctive characteristics. Notably, the segmentation masks 
produced by DeepLabv3+ showcase better-quality segmentations 
compared to U-Net, particularly excelling in accurately segmenting 
large waste materials. However, segmentation results of U-Net model 
demonstrate accurately segmented smaller particles in this specific 
aspect. This performance of the two models suggests potential consid
erations for their application in CRD waste recognition. Moreover, the 
comparative analysis of backbone networks reveals that ResNet-101 
consistently produces better results, followed by RegNetX-1.6 and 
MobileOne-S3. This emphasizes the relevance of considering both model 

Table 2 
Segmentation accuracies of models.  

Segmentation Model DeepLabv3+ U-Net 

Backbone Network ResNet-101 RegNetX-1.6 MobileOne-S3 ResNet-101 RegNetX-1.6 MobileOne-S3 
fwIoU 0.74 0.71 0.71 0.74 0.72 0.72 
mPA 0.84 0.83 0.83 0.85 0.82 0.83 
Class-wise IoU PA IoU PA IoU PA IoU PA IoU PA IoU PA 
BKG 0.73 0.86 0.69 0.86 0.71 0.86 0.72 0.87 0.72 0.86 0.72 0.87 
BIN 0.92 0.95 0.9 0.95 0.9 0.96 0.91 0.95 0.90 0.94 0.91 0.95 
CA 0.78 0.9 0.74 0.87 0.75 0.91 0.79 0.9 0.77 0.89 0.77 0.86 
WT 0.69 0.81 0.69 0.81 0.67 0.76 0.68 0.76 0.68 0.78 0.68 0.76 
HP 0.41 0.57 0.38 0.57 0.40 0.57 0.43 0.6 0.44 0.57 0.41 0.6 
SP 0.73 0.85 0.7 0.81 0.69 0.82 0.72 0.83 0.7 0.83 0.69 0.81 
ST 0.47 0.65 0.39 0.57 0.41 0.59 0.45 0.72 0.39 0.63 0.4 0.6 
CP 0.62 0.76 0.58 0.69 0.58 0.73 0.61 0.76 0.59 0.74 0.57 0.73 
MIX 0.49 0.61 0.42 0.48 0.4 0.47 0.5 0.61 0.49 0.6 0.47 0.61  
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Fig. 3. Quantitative results of CRD waste segmentation (a) Performance of segmentation models with different backbone networks (b) Segmentation accuracy of 
each category in the dataset (c) Confusion matrices of optimal models. 
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Fig. 4. Qualitative results of CRD waste segmentation.  
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