Magic wavelengths of Ca+ ion for linearly and circularly polarized light

Jiang, Jun; Jiang, Li; Wang, Xia; Shaw, Peter; Zhang, Deng Hong; Xie, Lu You; Dong, Chen Zhong

Published in:
Journal of Physics: Conference Series

DOI:
10.1088/1742-6596/875/13/122003

Published: 18/08/2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Magic wavelengths of Ca\(^{+}\) ion for linearly and circularly polarized light

To cite this article: Jun Jiang et al 2017 J. Phys.: Conf. Ser. 875 122003

View the article online for updates and enhancements.
Magic wavelengths of Ca⁺ ion for linearly and circularly polarized light

Jun Jiang*, Li Jiang*, Xia Wang*, Peter Shaw†, Deng-Hong Zhang*, Lu-You Xie* and Chen Zhong Dong*2

*Key laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070, China
†School of Engineering, Charles Darwin University, Darwin NT 0909, Australia

Synopsis. The dynamic dipole polarizabilities of the low-lying states of Ca⁺ ion for linearly and circularly polarized light are calculated by using relativistic configuration interaction plus core polarization (RCICP) approach. Present magic wavelengths for linearly polarized light agree with the available results excellently. Additional magic wavelengths have been found for circularly polarized light, which is very useful for magnetic-sublevel selective trapping.

The magic wavelength, at which the two levels of transitions have same AC stark shifts, was introduced in Refs. [1, 2]. It has been of great interest in ultraprecise optical lattice clocks and the state-insensitive quantum engineering [3, 4]. For circularly polarized light, the dynamic polarizability has vector and tensor component. The dynamic polarizability is different for different magnetic sublevels of atomic states.

In this work, the dynamic dipole polarizabilities of the 4s, 4p and 3d states of Ca⁺ ion for linearly and circularly polarized light are calculated by using relativistic configuration interaction plus core polarization (RCICP) approach. The basic strategy of the model is to partition the atom into valence and core electrons. The orbitals of the core are written as linear combinations of S-spinors which can be treated as relativistic generations of Slater-type orbitals. The orbitals of valence are written as linear combinations of L-spinors and S-spinors. L-spinors can be treated as relativistic generalizations of the Laguerre-type orbitals.

Fig.1 shows the dynamic polarizabilities of 4s and 4p1/2 states for the linearly (A=0) and left handed (A=−1) polarized light. In Fig.1 (a), three magic wavelengths are found, which are in good agreement with available results [5, 6]. Fig.1 (b) gives the dynamic polarizabilities for A = −1 for 4s1/2 and 4p1/2m=−1/2 states. There are only two magic wavelengths are found for 4s ~ 4p1/2 transition. There is no magic wavelength between 4p1/2 ~ 5s and 4p1/2 ~ 4d5/2 transition energy. The magic wavelength 395.5140 nm is very close to the magic wavelength 395.1788 nm for 4s ~ 4p1/2 transition for A=0. Another magic wavelength 778.3726 nm occurs between 4p1/2 ~ 4s and 4p1/2 ~ 3d5/2 transition energy. It has 87 nm difference with the magic wavelength 691.2444 nm for linearly polarized light.

Fig. 1. Dynamic polarizabilities (in au) for the 4s ~ 4p1/2 of Ca⁺ for the linearly (A=0) and left handed (A=−1) polarized light. Magic wavelengths are identified by arrows.

This work was supported by National Natural Science Foundation of China (Grant No. 11564036, U1332206, 11464042, U1330117, U1331122, U1530149), the Young Teachers Scientific Research Ability Promotion Plan of Northwest Normal University (NWNU-LKQN-15-3).

References

1E-mail: phyjiang@yeah.net
2E-mail: dongcz@nwnu.edu.cn