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The ORVAC trial: a phase IV,
double-blind, randomised,
placebo-controlled clinical trial of a third
scheduled dose of Rotarix rotavirus vaccine
in Australian Indigenous infants to improve
protection against gastroenteritis: a
statistical analysis plan
Mark A Jones1* , Todd Graves4, Bianca Middleton5, James Totterdell1, Thomas L Snelling1,2,3,5

and Julie A Marsh1

Abstract

Objective: The purpose of this double-blind, randomised, placebo-controlled, adaptive design trial with frequent
interim analyses is to determine if Australian Indigenous children, who receive an additional (third) dose of human
rotavirus vaccine (Rotarix, GlaxoSmithKline) for children aged 6 to < 12 months, would improve protection against
clinically significant all-cause gastroenteritis .

Participants: Up to 1000 Australian Aboriginal and Torres Strait Islander (hereafter Indigenous) infants aged 6 to
< 12 months will be recruited from all regions of the Northern Territory.

Interventions: The intervention is the addition of a third scheduled dose of human monovalent rotavirus vaccine.

Co-primary and secondary outcomemeasures: ORVAC has two co-primary outcomes: (1) anti-rotavirus IgA
seroconversion, defined as serum anti-rotavirus IgA ≥ 20 U/ml 28 to 55 days post Rotarix/placebo, and (2) time from
randomisation to medical attendance for which the primary reason for presentation is acute gastroenteritis or acute
diarrhoea illness before age 36 months. Secondary outcomes include (1) change in anti-rotavirus IgA log titre, (2) time
from randomisation to hospitalisation with primary admission code presumed or confirmed acute diarrhoea illness
before age 36 months, (3) time from randomisation to hospitalisation for which the admission is rotavirus confirmed
diarrhoea illness before age 36 months and (4) time from randomisation to rotavirus infection (not necessarily
requiring hospitalisation) meeting the jurisdictional definition before age 36 months.

Discussion: A detailed, prospective statistical analysis plan is presented for this Bayesian adaptive design. The plan
(Continued on next page)
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was written by the trial statistician and details the study design, pre-specified adaptative elements, decision
thresholds, statistical methods and the simulations used to evaluate the operating characteristics of the trial. As at
August 2020, four interim analyses have been run, but no stopping rules have been triggered. Application of this SAP
will minimise bias and supports transparent and reproducible research.

Trial registration: Clinicaltrials.gov NCT02941107. Registered on 21 October 2016

Original protocol for the study: https://doi.org/10.1136/bmjopen-2019-032549

Keywords: Statistical methods, Adaptive design, Interim analysis, Randomised controlled trial, Bayesian, Infectious
disease, Rotavirus vaccine, Rotarix, RV1

Background
Despite the introduction of rotavirus vaccine into the
childhood vaccination schedule in 2006, Northern Ter-
ritory Indigenous children remain more than 20 times
more likely to be hospitalised with rotavirus gastroen-
teritis than non-Indigenous children in other Australian
states and territories [1]. Data from remote communities
in the Northern Territory suggests that 77% of children
have at least one documented episode of clinic attendance
for diarrhoea before their first birthday, with a median of
three (IQR 1–5) clinical presentations for diarrhoea per
child in the first year of life [2].
The current vaccination schedule with Rotarix is at 2

and then 4 months of age. We hypothesise that the rou-
tine addition of a third scheduled dose of Rotarix for NT
Indigenous infants, administered between 6 months and
less than 12 months old, will improve protection against
clinically important rotavirus gastroenteritis.
This statistical analysis plan (SAP) provides a priori

specification of the decision-making rules and the statis-
tical methods to be used. It is intended to disseminate
practical knowledge on adaptive trials to trialists that are
new to these designs. The SAP was prepared after data
collection had commenced, but prior to observing any of
the data. The coordinating principal investigator (TLS)
was responsible for approving and signing off the SAP, and
the document has also been reviewed and approved by an
independent data monitoring safety board (DMSB). The
SAP is consistent with the CONSORT 2010 Statement [3]
and further guidelines [4–6] and supports transparent and
reproducible research.
As at August 2020, four interim analyses have been run,

but no stopping rules have been triggered.

Adaptive designs
While fixed design clinical trials are conceptually straight-
forward, they suffer from rigidity and frequently end with
inconclusive results [7, 8]. Contrastingly, adaptive designs
(ADs) allow for pre-specified adaptations that modify the
design as the trial progresses and as data is accumulated
[9].

Typical adaptations include dynamic changes to sample
size, dropping treatment arms for futility, response adap-
tive randomisation, seamless phase II/III trial transitions,
study population enrichment and early stopping rules [10]
that are triggered under predefined conditions [11]. Con-
sequently, ADs may be completed sooner, cost less to
run, reduce the number of patients exposed to inferior
treatments and provide more clinically relevant data than
fixed designs [12]. However, ADs are not without their
own limitations. The processes associated with obtain-
ing funding, planning and designing adaptive trials are
complex and can require more effort and time than tradi-
tional trials [8]. Furthermore, developing simulations [13]
to explore the frequentist operating characteristics (e.g.
type I error and power) requires specialist staff and/or
consulting services, custom software infrastructure and
high-performance computing facilities [7].
Historically, ADs and platform trials (a variant of an

adaptive trial) have generally been implemented in phase
I and II settings in the USA, with many originating from
the University of Texas MD Anderson Cancer Center [11,
14, 15]. However, interest in ADs is growing and they are
now being deployed and evaluated in phase III (e.g. [16–
18]) and IV settings [9, 19]. In early 2016, the REMAP-
CAP (Randomised, Embedded, Multifactorial Adaptive
Platform trial for Community-Acquired Pneumonia) trial,
an embedded platform trial run jointly in Europe, Aus-
tralia and New Zealand, commenced. REMAP-CAP has
served as a catalyst, motivating Australian trialists to raise
funds, develop capacity and become involved in adap-
tive trials to answer their research questions. Examples
include BEAT CF [20] and GBM Agile [21]. The ORVAC
trial is one of several Bayesian ADs that are in develop-
ment at the Telethon Kids Institute in collaboration with
Berry Consultants.

ORVAC study design
ORVAC is a pragmatic, investigator-led, double-blind,
randomised, placebo-controlled Bayesian adaptive clini-
cal trial testing a third scheduled dose of Rotarix rotavirus
vaccine (versus usual care) in Australian Indigenous

https://doi.org/10.1136/bmjopen-2019-032549
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infants to improve protection against clinically important
gastroenteritis. It has the following key features:

• Double-blind, randomised, placebo-controlled trial
(neither the outcome observer nor participant’s
caregivers know the treatment status);

• Non-fixed sample size up to 1000 participants (up to
the first 250 with venous sampling) based on
Bayesian stopping rules (minimum sample size of 70
for predicting futility);

• Fixed 1:1 parallel group enrolment into the active and
control arm throughout the trial;

• Frequent interim analyses;
• Evaluation of intervention effects in the Darwin urban

region compared to remote/very remote regions; and
• Study participation is from randomisation until the

end of follow-up at 36 months of age.

Adaptive elements
The adaptive elements all relate to sample size. Enrolment
will continue up to the maximum sample size unless one
of the following criteria for a statistical trigger is met at an
interim analysis:

1. Stop venous sampling because the treatment arm
shows overwhelming evidence of an increase in
seroconversion.

2. Stop for futility, ceasing the trial before the
maximum sample size is reached because the
probability of observing a beneficial treatment effect
is very small, even if the trial were continued to its
maximum sample size.

3. Stop for expected success, ceasing the trial before the
maximum sample size is reached because:

(a) Futility in both the immunological and
clinical outcome is very unlikely; and

(b) The treatment group shows overwhelming
evidence of an increase in the median time to
medical attendance for which the primary
reason for presentation is presumed or
confirmed acute gastroenteritis or acute
diarrhoea illness.

Futility and expected success are tested sequentially,
which implies that if we establish futility in either the
immunological or clinical outcome, then we will not test
for expected success.

Trial population
ORVAC has two population subgroups: (1) children
who normally reside in a major city, an inner or outer
regional area and (2) children residing in remote or
very remote areas according to the Australian Gov-
ernment Department of Health Australian Standard

Geographical Classification-Remoteness Area (ASGC-
RA) system. While baseline characteristics for immuno-
logical status and median time to medical atten-
dance/hospitalisation are not well understood for this
population, comparable settings have an RV vaccine effi-
cacy of around 50%. However, in the NT Indigenous
population, protection has been noted to wane after the
first year of life, estimated to fall to a rate of only 10% [22].
Estimates for the rate of hospitalisations due to acute gas-
troenteritis are also highly variable with median times to
hospitalisations reported to be between 15 and 40 months
from birth [1].
The clinical data from this trial will be analysed and

reported on an intention-to-treat (ITT) basis with all ran-
domised participants contributing to the analysis of the
co-primary endpoints. Specifically, for the ITT analysis:

• Patients will be analysed in the group they were
allocated to;

• Patients not receiving Rotarix/placebo will be
retained;

• False inclusions will be retained;
• Protocol deviations will not result in exclusion; and
• The potential effect of missing values will be

examined (see later).

We will also produce companion analyses on a per-
protocol (PP) basis using the subset of participants that
completed without protocol violation.

CONSORT diagram
We will prepare an expanded CONSORT diagram suit-
able for a parallel two-armed adaptive trial. We will record
the start and end dates of accrual, the flow of participants
through the study including the completeness of follow-
up as per the CONSORT statement [23]. We will note
participants enrolled and randomised and eligibility for
analyses.

Randomisation
Stratified (regional vs remote), random allocation of two
treatment arms to contiguous randomisation numbers
(1 to 1000) was provided by JM. The allocation was
computer-generated using random permuted block sizes
between 6 and 20. The allocation ratio within these strata
is 1:1, andMAJmaintains the password-protected file that
contains the allocation sequences.

Blinding
The ORVAC trial is double-blind with neither the partic-
ipants nor the research staff having knowledge to patient
treatment status. MAJ is solely responsible for interim
analyses and reporting to the Data Safety Monitoring
Board (DSMB). JM is responsible for quality control
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review on the interim analysis reports, with both MAJ
and JM being unblinded. JT is responsible for code review,
but remains blinded to the randomisation and results. All
other staff and investigators are blinded. Interim analy-
ses are discussed in closed session between MAJ and the
DSMB with no investigators present. After each interim
analysis is completed and approved by the DSMB, a rec-
ommendation for continuing the study (with no reference
to the results) is reported to TS by the DSMB. All ran-
domisation lists and analyses are kept on a secure server
for which only MAJ has access.

Study objectives and outcomes
The purpose of this study is to determine if Indige-
nous children who receive an additional dose of Rotarix
between the ages of 6 and 12 months will have an
increased anti-rotavirus serum IgA seroconversion and an
increase in the time to medical attendance due to gas-
troenteritis in the first 3 years of life, compared to those
who receive placebo.

Co-primary
The primary objective is quantified through a clinical and
an immunological outcome designed to measure the clin-
ical effectiveness of an additional scheduled dose and any
change in the immune response.
The immunological outcome is anti-rotavirus IgA

seroconversion, defined as serum anti-rotavirus IgA
≥ 20 U/ml at 28 to 55 days post Rotarix/placebo among
infants with anti-rotavirus serum IgA < 20 U/ml prior to
administering the third dose.
The clinical outcome is the time from randomisation

to first medical attendance (hospitalisation, emergency
department presentation, medical clinic presentation) for
which the primary reason for presentation is presumed
or confirmed all-cause acute gastroenteritis or acute diar-
rhoea illness between randomisation and age 36 months.

Secondary
The secondary objectives are exploratory and examine
other aspects of effectiveness and immune response, see
below and Table 1. Additionally, we will report on the
safety and tolerability by examining the occurrence of
intussusception potentially attributable to the interven-
tion and the occurrence of serious adverse events.
Clinical outcomes comprise:

• Time from randomisation to hospitalisation for
which the primary coded reason for admission is
presumed or confirmed acute gastroenteritis or acute
diarrhoea illness before age 36 months;

• Time from randomisation to hospitalisation for
which the primary reason for admission is
rotavirus-confirmed diarrhoea illness before age
36 months; and

Table 1 Analysis methods for secondary outcomes

Endpoint Overview

Time from randomisation to
hospitalisation for which the
primary coded reason for
admission is presumed or
confirmed acute
gastroenteritis or acute
diarrhoea illness between
randomisation and age
36 months.

Summary of the median and
inter-quartile range for each
treatment arm. The analysis
will follow the form of the
analysis for the primary clinical
endpoint. We will provide a
competing risk analysis as
discussed in the main text.

Time from randomisation to
hospitalisation for which
rotavirus confirmed diarrhoea
illness occurs between
randomisation and age
36 months.

Summary of the median and
inter-quartile range for each
treatment arm. The analysis
will follow the form of the
analysis for the primary clinical
endpoint. We will provide a
competing risk analysis as
discussed in the main text.

Time from randomisation to
rotavirus infection meeting the
jurisdictional case definition
between randomisation and
age 36 months.

Summary of the median and
inter-quartile range for each
treatment arm. The analysis
will follow the form of the
analysis for the primary clinical
endpoint. We will provide a
competing risk analysis as
discussed in the main text.

Change in anti-rotavirus IgA
log titre between
administration of intervention
(RV1/placebo) and 28 to
55 days post dose.

We will adopt a robust linear
regression analysis assuming
the errors follow t distribution
with between 3 and 7 degrees
of freedom.

Frequency of intussusception
fulfilling Brighton criteria
within the first 28 days after
administration of the third
dose

Descriptive summary.

Frequency of serious adverse
events between randomisation
and age 36 months.

Descriptive summary.

• Time from randomisation to rotavirus infection (not
necessarily requiring hospitalisation) that meets the
jurisdictional case definition (for disease notification)
before age 36 months.

Immunological outcomes comprise:

• Change in anti-rotavirus IgA log titre between
administration of the Rotarix or placebo dose and 28
to 55 days post dose.

Safety outcomes comprise:

• The occurrence of intussusception fulfilling Brighton
criteria [24] within the first 28 days after
administration of the Rotarix or placebo dose; and

• Serious adverse events as defined by [25] between
randomisation and age 36 months.
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Competing risks
Conventional statistical methods for survival analysis
assume independent or noninformative censoring. How-
ever, the presence of competing risks violates the nonin-
formative censoring assumption because the occurrence
of one event influences the likelihood of a competing
event from occurring [26]. While the co-primary time-
to-event outcome defined here does not compete with
any other event, the secondary clinical time-to-event out-
comes and safety outcomes may represent competing
risks. This is true even though the secondary clinical out-
comes are not strictly mutually exclusive as it is sufficient
that the occurrence of one event influences the probability
of subsequent events of a different type for the competing
risks context to be relevant.
Competing risks require special handling, and we return

to this topic in a later section.

Statistical analyses
ORVAC is a superiority trial that uses Bayesian meth-
ods for inference and decision-making. Unless otherwise
noted, all parameter estimates will be reported as means
or medians with 95% credible intervals.

Descriptive statistics
Participant characteristics will be summarised by treat-
ment group and stratified by locality. No formal statistical
testing will be performed to compare groups at this stage.
We will provide quantitative summaries of the participant
data including:

• Number of participants in ITT;
• Age at randomisation;
• Number of prior doses of Rotarix vaccination;
• Sex;
• Common comorbidities at randomisation;
• Breast feeding status;
• Anthropometric indices;
• Location of residence (urban versus remote);
• Proportion seropositive at baseline and

seropositive/seroconverted at follow-up;
• Change in anti-rotavirus IgA between administration

and second follow-up;
• Frequency of medical attendance events;
• Time to medical attendance events;
• Frequency of censoring;
• Frequency of intussusception;
• Frequency of adverse events; and
• Occurrence and timing of gastroenteritis outbreaks

by community.

Analysis of co-primary outcomes
We will assess both the immunological and clinical out-
comes in a Bayesian framework with all model results

reported. All models will be fit usingMarkov ChainMonte
Carlo (MCMC).

Immunological co-primary outcome
The immunological outcome will be modelled using logis-
tic regression including a covariate for treatment status
(control arm coded as 0, treatment coded as 1). Denot-
ing yi as the seroconversion status, πi as the probabil-
ity of seroconversion and trti as an indicator variable
for group membership for individual i, in the simplest
case, we have:

yi ∼ Bin(1,πi) (1)
logit(πi) = β1 + βtrt × trti (2)

However, we will also fit additional models that adjust
for locality (urban versus remote), locality by treatment
interaction, sex of participant, breast-feeding status in
the 7 days prior to enrolment and community-specific
indicators for gastroenteritis outbreaks.
We will use independent Student t distribution priors

with location zero and scale 3 with 7 degrees of free-
dom that are recommended for general purposes [27, 28].
These priors imply

• The parameters are as likely to be positive as they are
to be negative;

• The intercept is consistent with baseline log-odds
between − 10 and 10; and

• A unit change in any covariate would be unlikely to
exceed an absolute change of 5 on the log-odds scale.

We note that these priors are similar to normal priors,
which are also suitable for logistic regression, but the Stu-
dent t has slightly heavier tails [28]. The Student t priors
are considered weakly informative and produce stable,
moderately regularised and robust estimates. When using
the Student t priors, it is recommended that binary inde-
pendent variables are shifted to have a mean of zero and
differ by one and that continuous independent variables
have a mean of zero and a standard deviation of 0.5 [27].
Therefore, we will adopt this transformation, which puts
all the input variables onto the same scale.
We will calculate the probability that the log odds ratio

(βtrt) is greater than zero. If this probability exceeds 0.97,
chosen by simulation to control the type I error, we will
conclude a successful treatment effect of increased proba-
bility of seroconversion in the treatment arm. In notation,
we conclude a treatment effect has been demonstrated if
P(βtrt > 0) > 0.97. We will report both absolute val-
ues of the proportion of participants that seroconverted in
each arm and the treatment effect size as a difference in
proportions and as odds ratios.
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Clinical co-primary outcome
In time-to-event analyses, the Cox proportional hazards
(PH) semi-parametric model [29] is commonly applied.
This model does not require knowledge of the base-
line hazard function, which is generally held as its chief
advantage. However, parametric models (and some semi-
parametric variants) have advantages such as greater effi-
ciency, they provide smoothly estimated survival func-
tions and are easy to fit [30–34]. For ORVAC, we will
adopt a Weibull proportional hazard (PH) model with
covariates introduced through the scale parameter [34].
We will undertake model checking using standard meth-
ods of posterior predictive checks, leave-one-out cross-
validation and information criterion [34–37].
For theWeibull PHmodel, denoting the time to event as

ti for individual i, we have:

ti ∼ W(λi, a) (3)
h(ti) = λ∗ata−1

i (4)

where h(ti) is the hazard function. In the simplest case, we
will set the scale parameter to λ∗ = λexp(θtrt × trti), with
the absence of an intercept being intentional [37], yield-
ing a PH model with shape parameter a and with both
λ > 0 and a such that the hazard increases when a > 1
and decreases when a < 1. The corresponding survival
function of the Weibull model is:

S(ti) = exp(−exp(θtrt × trti)λta) (5)

from which it is implied that a plot of log(−logS(ti))
versus log(ti) will be approximately linear if the Weibull
distributional assumption is reasonable. Furthermore, if
analogous plots constructed for each treatment group
yield parallel lines, then the proportional hazard assump-
tion is valid. We will undertake model checking via the
above heuristics and the usual Bayesian methods of pos-
terior predictive checks and information criterion-based
assessments. Finally, in cases where the PH assumption
is violated, we will consider introducing time-dependent
covariates or constructing an accelerated failure time
(AFT) formulation as alternative strategies [38, 39].
For the shape parameter, a, we will adopt an exponen-

tial distribution prior with rate 0.7. This is consistent with

values less than 10 and supports increasing and decreas-
ing hazards with approximately equal probability. For the
parameters in the linear predictor (the scale parameter
and the hazard ratios), we will adopt independent nor-
mal priors (mean zero and standard deviation of 10). The
normal priors are consistent with values on the log scale
between − 15 and 15.
We will report the median time to event in each group

and hazard ratios to quantify the treatment effect. In an
analogous approach to that used in the immunological
outcome, we will compute the probability that the param-
eter estimate for the treatment term is less than 0. If this
probability exceeds 0.97 in the covariate-adjusted model,
then we will conclude that a third scheduled Rotarix dose
results in a treatment effect corresponding to a lower
hazard of medical attendance in the treatment arm. In
notation, we will conclude a treatment effect if P(θtrt <

0) > 0.97.
We will use the methods as described above in the

interim analyses including a single covariate for the treat-
ment effect and using the predictive probability thresholds
summarised in Table 2 for decision-making.
In the final analyses for the clinical endpoint, if P(θtrt <

0) > 0.97 in the adjusted model, we will claim trial
success.

Analyses of secondary outcomes
The secondary endpoints comprise time-to-event mea-
sures, discrete measures and continuous measures. Short
descriptions of the methods to be used for each secondary
outcome are detailed in Table 1.
As noted earlier, conventional statistical methods for

the analysis of survival data assume that competing risks
are absent. Given that the clinical outcomes (and adverse
and serious adverse events) represent competing risks, the
results from a sub-distributional hazard model will also be
reported as has been recommended for RCTs [40, 41].

Interim analyses of co-primary outcomes
Bayesian adaptive trials rely on accumulating data and
pre-specified decision rules to trigger adaptations. How-
ever, in order to ensure trial integrity, extensive simulation

Table 2 Probability thresholds for evaluating statistical triggers at interim and final analyses

Posterior/predictive Decision Threshold Comment

Posterior Win 0.97 Probability threshold to test that treatment difference is greater than
zero

Predictive Expected success 0.90 Proportion of successful trials must be greater than this threshold to
claim expected success

Predictive Futility 0.05 Proportion of successful trialsmust be in less than this threshold to claim
futility

Predictive Stop venous sampling 0.90 Proportion of successful trials must be greater than this threshold to
stop venous sampling
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of the trial is required to investigate and quantify the oper-
ating characteristics such as the type I error rates, power
and expected sample size under a range of hypothetical
trial scenarios.
In this section, we outline the decision processes used

for the interim analyses. Details on the simulations that
were used to evaluate the operating characteristics of the
trial are provided in a later section.
A simplified flow chart for the interim analyses and

decision rules is presented in Fig. 1. The first interim
analysis on the immunological endpoint will occur
when 70 participants have full (baseline and follow-up)
immunologic results. Further interim analyses occur after
every subsequent 50 children or after every 3 months,
whichever occurs sooner, unless there have been no new
entrants. If there are no new blood samples and/or events,
then we will defer the full analysis until the next sched-
uled interim. Analysis of the clinical endpoint will start

when 200 children are enrolled in order that there are
enough events to meaningfully undertake a time-to-event
analysis.
After the maximum number of participants with

immunological samples (n = 250) has been collected and
processed, we will continue to conduct interim analyses
every 3 months using the accumulating clinical outcome
data until a statistical trigger occurs or the maximum
sample size is reached.
The data for assessing the clinical outcomes and/or seri-

ous adverse events is obtained from surveillance, which is
ongoing until 36 months of age. In brief, each participant’s
medical records are checked within 28 to 55 days of vacci-
nation and then every 6 months after vaccination. When
medical care cannot be identified, we will make direct
contact with the participant’s legally responsible caregiver
and/or treating physician to determine whether medical
attendance or serious adverse events occurred.

Fig. 1 Process flow diagram for interim analyses and decision rules
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Censoring is complicated by virtue of the intermit-
tent surveillance on each participant; this is especially
the case for the interim analyses. At each interim anal-
ysis, for participants (1) not yet having had an event,
(2) less than 36 months of age and (3) not considered
lost to follow-up, we will censor at the time of the
last surveillance time. Participants will be censored at
36 months of age if they have not had an event, and
if lost to follow-up, censored at the last known time
to be in the study. If no surveillance has occurred for
an enrolled participant at the time of an interim anal-
ysis, then we will not use their data for estimating the
posterior.
At each interim analysis up to n = 250, we will have

incomplete immunological results on the enrolled
participants. Additionally, many participants will not
have reached the clinical endpoint nor completed
follow-up. In order to incorporate all of the avail-
able information into the decision framework, we
make use of posterior predictive distributions to
generate simulated data conditional on our poste-
rior parameter estimates. This process enables us to
impute values for subjects with incomplete results
[13].
For the immunological outcome, we will compute the

joint posterior distribution of the model parameters using
methods detailed earlier, namely a logistic regression
model with an indicator variable for treatment status. We
will use all the available data with complete immunologi-
cal results.
Next, we will test for futility by computing the pre-

dictive probability of observing a treatment effect under
the assumption that we continue to the maximum sam-
ple size (n = 250) for the immunological endpoint. A
predictive probability is computed using the following
steps.

1. Take a draw from the joint posterior distribution.
2. Use the draw to simulate random variables from a

Bernoulli distribution to impute the immunological
results that are not yet available for the enrolled
participants with pending immunological results and
the immunological results for future participants that
are currently unenrolled up to the maximum sample
size of 250.

3. Combine the observed and the simulated data to
form a complete dataset.

4. Fit a logistic regression model to the complete
dataset and compute the probability that the
treatment effect is above zero.

5. If the probability that the treatment effect is greater
than zero is above a threshold value, then consider

the trial successful and increment a counter of the
number of successful trials.

6. Go back to step 1, repeating the process at least 1000
times.

At the end of the process, we know the number of times
that the trial was deemed successful from which we can
compute the probability of predicted success (PPoS) as:

PPoS = 1
k

k∑

1
I[P(βtrt > 0) > 0.97] (6)

where I() represents an indicator function evaluating to 1
if the contained expression is true and 0 otherwise, βtrt is
the log odds ratio of seroconversion in the treatment arm
versus the control arm and k is the total number of simu-
lated datasets. If the PPoS is less than the futility threshold,
then stop for futility and cease enrolment.
Next, if futility was not established, repeat the above

process; however, only impute for the enrolled partici-
pants that do not yet have complete immunological data.
If the resultant PPoS is greater than the threshold to stop
venous sampling, we will cease venous sampling. If either
the futility or stop venous sampling thresholds are trig-
gered, we will undertake a final analysis on the immuno-
logical outcome once all the enrolled participants (at the
time of the trigger) have been followed to completion.
Assuming that the trial has not been stopped for futil-

ity, we will start analysing the clinical endpoint at the next
scheduled interim analysis after 200 participants have
enrolled. The interim analysis process for the clinical out-
come is similar to that of the immunological outcome, but
with the added complication of censoring.
First, we will compute the joint posterior distribution

of the model parameters using methods detailed earlier,
namely a Weibull proportional hazards model with an
indicator variable for treatment status. To compute the
posterior, we will use the data from all participants that
have had at least one surveillance visit.
Next, we will test for futility by computing the pre-

dictive probability of observing a treatment effect under
the assumption that we continue to the maximum sam-
ple size (n = 1000) for the clinical endpoint. A predictive
probability is computed using the following steps.

1. Take a draw from the joint posterior distribution.
2. Use the draw to simulate random variables from a

left-truncated Weibull distribution to impute the
event times for the enrolled participants that are not
yet censored due to age but are yet to have an event.
Additionally, use the draw to simulate the event
times from a Weibull distribution for the participants
not yet enrolled, up to the maximum size (n = 1000).
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3. If the simulated event times occur after the
participant is 36 months old, then censor at
36 months less the age of enrolment, which, if
unknown, is drawn from a uniform distribution
between 6 and 12 months.

4. Combine the observed and the simulated data to
form a complete dataset.

5. Fit a Weibull proportional hazards model to the
complete dataset and compute the probability that
the treatment effect is below zero.

Table 3 Type I error rates for null configurations

Parameters Accrual per 3 months Info. delay Samp. size mean (SD) Type I error rate

Median time to event Prob. Seroconv. Clinical Immuno

50 0.7 50 0.7 259 (259.2) 0.036 0.032

50 0.7 30 0.7 247 (238.4) 0.041 0.028

50 0.7 50 0.5 264 (266.3) 0.039 0.030

50 0.7 30 0.5 252 (244.8) 0.043 0.032

50 0.4 50 0.7 261 (262.2) 0.033 0.031

50 0.4 30 0.7 247 (238.6) 0.042 0.029

50 0.4 50 0.5 259 (260.4) 0.037 0.028

50 0.4 30 0.5 248 (242.2) 0.042 0.032

50 0.1 50 0.7 256 (254.9) 0.031 0.031

50 0.1 30 0.7 247 (237.7) 0.038 0.032

50 0.1 50 0.5 259 (259.0) 0.036 0.031

50 0.1 30 0.5 246 (239.2) 0.040 0.032

35 0.7 50 0.7 253 (253.5) 0.034 0.030

35 0.7 30 0.7 245 (236.8) 0.039 0.029

35 0.7 50 0.5 260 (259.0) 0.040 0.030

35 0.7 30 0.5 247 (239.6) 0.043 0.034

35 0.4 50 0.7 264 (263.3) 0.039 0.031

35 0.4 30 0.7 246 (237.6) 0.043 0.031

35 0.4 50 0.5 262 (262.8) 0.038 0.030

35 0.4 30 0.5 247 (237.9) 0.042 0.030

35 0.1 50 0.7 259 (256.7) 0.033 0.031

35 0.1 30 0.7 246 (238.4) 0.035 0.035

35 0.1 50 0.5 259 (258.9) 0.036 0.028

35 0.1 30 0.5 242 (231.9) 0.038 0.030

20 0.7 50 0.7 264 (261.5) 0.037 0.028

20 0.7 30 0.7 244 (233.4) 0.038 0.027

20 0.7 50 0.5 260 (259.1) 0.041 0.029

20 0.7 30 0.5 247 (235.8) 0.043 0.027

20 0.4 50 0.7 258 (256.9) 0.036 0.030

20 0.4 30 0.7 246 (236.9) 0.041 0.029

20 0.4 50 0.5 262 (263.4) 0.040 0.029

20 0.4 30 0.5 248 (237.6) 0.044 0.030

20 0.1 50 0.7 257 (250.7) 0.034 0.031

20 0.1 30 0.7 244 (233.6) 0.035 0.029

20 0.1 50 0.5 256 (254.4) 0.036 0.033

20 0.1 30 0.5 242 (231.1) 0.038 0.032
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6. If the probability that the treatment effect is below
zero is above a threshold value, then consider the
trial successful and increment a counter of the
number of successful trials.

7. Go back to step 1, repeating the process at least 1000
times.

At the end of the process, we know the number of times
that the trial was deemed successful from which we can
compute the probability of predicted success (PPoS) as:

PPoS = 1
k

k∑

1
I[P(θtrt < 0) > 0.97] (7)

where I() represents an indicator function evaluating to
1 if the contained expression is true and 0 otherwise, θtrt
is log hazard ratio for the treatment effect and k is the
total number of simulated datasets. If the PPoS is less
than the futility threshold, then stop for futility and cease
enrolment.

Next, if futility was not established, repeat the above
process; however, only impute for the enrolled partici-
pants that have not yet had an event or have not yet
had a visit and are not censored for age. If the imputed
event times fall beyond the time of the interim or age
to 36 months, then censor appropriately. If the resultant
PPoS is greater than the expected success threshold, we
will cease the trial for expected success. If either futility or
expected success thresholds are triggered, we will under-
take a final analysis on the clinical outcome once all the
enrolled participants (at the time of the trigger) have been
followed to completion.
If none of the above rules are met, we continue enrolling

(up to 1000 participants) and venous sampling (up to 250
participants).
If we observe a treatment effect associated with the

immunological but none for the clinical outcome, we will
conclude that a positive immunological effect has been
conferred, but a clinically meaningful benefit has not been

Fig. 2 Statistical power for clinical outcome for a range of baseline values, effect sizes and accrual rates
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demonstrated. If we observe neither immunological nor
clinical treatment effects, we will deem the trial to have
not met our predefined decision thresholds, but report on
the observed probabilities of immunological and clinical
treatment effects.
As documented in the protocol [42], the trial may also

be stopped at any point at the discretion of the coordinat-
ing principal investigator (CPI) or the trial sponsor. The
DSMB will advise the CPI according to pre-determined
stopping rules or unanticipated safety concerns.

Safety and adverse events
Two safety and tolerability outcomes are defined in the
protocol: the occurrence of intussusception within the
first 28 days after randomisation and the occurrence
of serious adverse events between randomisation and
36 months. The occurrence of intussusception will be

reported in terms of frequency and proportion, by treat-
ment arm and overall. The serious adverse events as
defined by [25] will be reported as frequency and pro-
portion, stratified by treatment arm and overall. While no
analysis will be performed on the safety and adverse event
data, they will be included in the competing risk sensitivity
analysis mentioned earlier.

Pre-specified subgroup analyses
No subgroup analyses were pre-specified in the protocol.

Sensitivity analyses
As a sensitivity analysis, we will examine the results at the
final analysis for the clinical endpoint by fitting a piece-
wise exponential model that permits the baseline hazard
to be a function of treatment, i.e. treatment level time
varying hazards [43].

Fig. 3 Expected sample size (total enrolled) assessed on clinical and immunological outcome over a range of baseline values, effect sizes and
accrual rates
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Given that the endpoints are binary and event times
(with possible right censoring), there will be no data
outliers.

Datamonitoring
The processes around trial monitoring, including data
monitoring, are defined in the quality assurance proce-
dures of the ORVAC protocol document.
In brief, data will be sourced from a specifically designed

clinical record form (CRF) comprising consent forms,
eligibility assessment, visit record, adverse event details
and protocol deviations. Data is entered from these
sources into a trial database by study personnel. Data
queries are raised by the data manager and cleaned by
both the data manager and trial statistician. All planned
final analyses identified herein are to be performed
after the study is completed and the database has been
cleaned and locked. However, the interim analyses will
be performed on incomplete data in that amendments

may occur to the data that was used in an interim at
some time after the interim analysis is completed. Our
assumption here is that less than 5% of the sample
size at any given interim analysis will be subsequently
amended.

Missing data
Within Bayesian analyses, missingness is either ignorable
or non-ignorable. In the former case, the parameters relat-
ing to the measurement are distinct from those that relate
to missingness and the mechanisms are termed either
Missing Completely at Random (MCAR) or Missing at
Random (MAR). For MCAR, a complete-case analysis
will result in reduced efficiency but is unbiased. However,
for MAR, a complete-case analysis will be both ineffi-
cient and biased. Non-ignorable missingness relates to
those data that are Missing Not At Random (MNAR).
Under MNAR, an extra model is required to predict the
missingness.

Fig. 4 Statistical power for immunological outcome for a range of baseline values, effect sizes and accrual rates
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Fig. 5 Probability of expected success assessed on clinical outcome over a range of baseline values, effect sizes and accrual rates

One of the advantages of using Bayesian methods is that
they offer a natural way to simultaneously impute miss-
ing values and fit models on the observed and imputed
data [44]. After exploring the amount and patterns of
missing data and the association with other variables, we
will impute as necessary using a fully Bayesian approach
following methods as per [44].

Evaluation of operating characteristics
Except for the simplest of cases, the operating char-
acteristics for a Bayesian adaptive trial are analytically
intractable. Therefore, these are usually estimated by
Monte Carlo methods, which are a general purpose tool
for optimisation and integration problems [45]. In the
context of exploring the operating characteristics of a
given trial, the idea is to formulate a data generating
process (DGP) that represents expected and plausibly
extreme outcomes for the actual trial. However, as is the

case here, it may be necessary to simplify the data gen-
erating process and/or analysis approach in order to be
able to run the simulations within a workable timeframe.
Using the assumed DGP, trial data can be simulated many
times and the resulting ‘virtual trials’ are analysed using
methods described shortly. Various characteristics of the
DGP can then be derived. For example, the expected type
I error (false positive rate) is derived from data that are
generated under a null effect configuration and estimated
from the proportion of times that we falsely detect a dif-
ference between the treatment arms in the final analysis.
We have examined the operating characteristics of the

ORVAC trial in more than 300 scenarios using Monte
Carlo simulation of the parameter space associated with
a representative data generating, sampling and modelling
process. For the immunological endpoint, seroconversion
was modelled via a series of independent Bernoulli tri-
als with control arm probabilities of seroconversion (the
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Fig. 6 Probability of futility assessed on clinical and immunological outcome over a range of baseline values, effect sizes and accrual rates

baseline seroconversion rate) between 0.1 and 0.7 and a
change of probability of seroconversion in the treatment
arm between 0 (the null case) and 0.15 above the baseline
rate. Additionally, we modelled information delays asso-
ciated with processing the immunological endpoint of 0.5
and 0.7 months. For the clinical endpoint, we modelled
time to event as an exponentially distributed random vari-
able. The control arm median time to event was set at
20–50 months and a change in the median time to event
varied between 0 (the null case) and 15 months. Event
times were censored at 36 months of age. We modelled
accrual using a Poisson process generating approximately
30 and 50 participants per quarter. Age at vaccination
was modelled using a uniform distribution with lower and
upper bounds of 6 and 12 months respectively. The co-
primary endpoints weremodelled as independent random
variables.
For the analyses, we used conjugate prior models

because Markov Chain Monte Carlo estimates of the

posterior and posterior predictive distributions were pro-
hibitively costly in terms of available CPU resources.
Specifically, we used the beta conjugate prior to the
binomial likelihood for the immunological endpoint, and
the gamma conjugate prior to the exponential likelihood
for the clinical endpoint with both sets of priors con-
figured to be weakly informative. We note that while
the simulation methods are representative of the anal-
yses we propose for the trial, they are not identical
to them.
For each scenario/subset of the parameter space, we

simulated 10,000 trials for the null cases and 1000 trials for
the trials where each configuration was for a non-zero dif-
ference between the treatment arms. We summarised and
reviewed the results with other statisticians and study CIs,
explored the trial decision probability thresholds and then
re-ran the scenarios. Thewhole process was repeated until
acceptable false positive and other trial characteristics
were obtained.
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For each scenario, all posterior sampling was based
on 2000 draws from the relevant distribution. Posterior
predictive assessments were based on a further 1000 pos-
terior predictive draws at each interim for both endpoints.
The simulations were written in R and C++, reviewed

by JT and stored under version control. The simulations
were coded and run by MAJ on Linux-based multi-core
servers.

Probability thresholds for interim and final
decisions
Table 2, presented earlier, details the thresholds that were
identified through simulation to be used for the interim
and final analysis.

Type I error rate
Table 3 provides examples of the type I error rates
obtained over a range of plausible scenarios. In all cases,

the type I error/false positive rate is controlled at the
α < 0.05 level for both co-primary endpoints. Adjust-
ment for multiple comparisons is addressed via the prob-
ability thresholds that are selected to be used in the
analyses.

Sample size, power and expected success
Figures 2 and 3 show the power curves for the clinical out-
come and expected total sample size respectively. Other
aspects of the operating characteristics including prob-
ability of expected success, futility and stopping venous
sampling and expected sample size of the immunologi-
cal endpoint over the parameter space are provided as
supplemental material Figs. 4, 5, 6, 7, and 8.
The clinical and immunological outcome are analysed

independently. For the clinical outcome, power increases
monotonically as a function of increasing effect size and
lower baseline median time-to-event scenarios. For a

Fig. 7 Probability of stopping venous sampling assessed on immunological outcome over a range of baseline values, effect sizes and accrual rates
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Fig. 8 Expected sample size (venous samples) assessed on immunological outcome over a range of baseline values, effect sizes and accrual rates

baseline median time to event of 35 months, power climbs
from 50 to 75% as the difference between the median time
to event in the two arms increases from 10 to 15 months.
At a baseline time to event of 20 months, the power
to detect a 10-month difference is over 70%. Power was
relatively insensitive to the accrual rates and information
delays that we examined.
For the immunological outcome, power is largely inde-

pendent of the clinical outcome configuration. For a
baseline probability of seroconversion of 0.4, while the
power to detect a 0.1 difference in probability of sero-
conversion is only around 40%, this increases to around
70% to detect a difference of 0.15. However, when
the baseline probability of seroconversion is 0.1, the
power to detect a 0.1 difference is in excess of 60%
and to detect a 0.15 difference is well in excess of
80%.
The probability of expected success increases as a func-

tion of the difference between the median time to event

in the treatment versus control arm. When the difference
between the probability of seroconversion between the
treatment and placebo arms is 0.05, the probability of
expected success is only around 0.2. However, as the
difference in the seroconversion probabilities increases,
the probability of expected success becomes increasingly
likely.
The probability of stopping for futility is dependent

on both the clinical and immunological outcomes. For
a difference between the median time to event equal to
5 months, the probability of futility is up to 0.7. However,
as the difference between the median time to event and
probability increases, the probability of futility drops to
less than 0.1.
The probability of stopping venous sampling before

reaching the maximum of n = 250 is only around 0.2
when the difference in the probability of seroconversion
between the two arms is 0.05. However, this increases
rapidly as the difference between the groups increases and
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is up to 0.8 when the difference in the probability in the
two arms is 0.15.
The expected sample size reduces as a function of clin-

ical endpoint effect size but increases as a function of the
immunological endpoint effect size. This is because the
probability of ceasing the trial for futility remains high (in
excess of 50%) when the immunological endpoint effect
size is low. However, as the immunological endpoint effect
size increases, so does the probability that the trial will
continue to accumulate enough data to detect a clinical
treatment effect. Based on the scenarios we simulated, we
anticipate a minimum expected sample size of around 300
participants and up to a maximum sample size of 700. We
anticipate that the expected number of blood samples will
range from 150 to 200.

Analysis software
We used R version 3.5.3, RStudio version 1.1.423 and C++
for the trial simulations and will use these or later versions
in the trial analyses.

Discussion
The motivations, context and procedures for implement-
ing the ORVAC trial have been described in the protocol.
In this document, we have provided a detailed specifi-
cation of the statistical matters and decision processes
relating to the interim and final analyses.We discussed the
Monte Carlo simulations of plausible and extreme scenar-
ios used to establish the operating characteristics of the
ORVAC trial.
As called for in comparable trials investigating alterna-

tive dosing schedules [46, 47] and proposed frameworks
for evaluating rotavirus vaccines [48], ORVAC imple-
ments co-primary immunological and clinical endpoints.
This feature enables us to examine the extent to which
laboratory findings translate into a public health bene-
fits. The adaptive sample-size design with regular interim
analyses enables us to stop the trial for futility (due to
unacceptably low chance of observing a treatment effect)
or expected success (due to overwhelming evidence of
a treatment effect). These adaptive elements have been
shown to decrease unnecessary expense of resources,
reduce risk to participants and minimise the chance of
inconclusive results [10]. The results from the analyses
documented herein will be published in peer-reviewed lit-
erature. At a minimum, these publications will include
independent reporting on the final immunological out-
come and the final clinical outcome after the relevant
stopping rules have been triggered and the follow-up
period completed.

COVID-19 pandemic
The COVID-19 pandemic has impacted the ORVAC trial
due to policy responses as follows: (1) permits for travel

to remote Top End communities were revoked by North-
ern Land Council, (2) research has been postponed in
all Congress sites by the Central Australian Aboriginal
Congres and (3) Menzies Institute suspended all research
involving direct contact between researchers and partici-
pants
In response, the ORVAC team suspended recruitment

and day 28–55 follow-up visits as of 23 March 2020 for
all sites. However, medical record review will continue as
per the protocol. All blood samples have been sent from
the Darwin and Alice laboratories to Perth, deep frozen
and will be processed once the Perth pathology laboratory
reopens. As the first participant was enrolled into ORVAC
on 27 March 2018, we define the pre-COVID-19 time
period as 27 March 2018 to 23 March 2020. As of 5 June
2020, the Darwin sites have reopened for enrollment. Fur-
ther discussion of COVID-19 impacts have been included
in the supplementary documents (Additional file 3).

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s13063-020-04602-w.

Supplementary information accompanies this paper at:

Additional file 1: SPIRIT 2013 Checklist. Standard Protocol Items:
Recommendations for Interventional Trials.

Additional file 2: Impacts relating to COVID-19 pandemic (ORVAC Trial).
Documentation on potential impacts associated with the COVID-19
pandemic on the ORVAC Trial.

Trial status
At the time of writing, the trial is actively recruiting, data collection has
commenced, and the fourth interim analysis has been completed without
triggering any pre-specified decision rules. The current statistical analysis plan
is dated 25 June 2019.
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