

Charles Darwin University

A hybrid deep learning image-based analysis for effective malware detection

Venkatraman, Sitalakshmi; Alazab, Mamoun; Vinayakumar, R.

Published in:
Journal of Information Security and Applications

DOI:
10.1016/j.jisa.2019.06.006

Published: 01/08/2019

Document Version
Peer reviewed version

Link to publication

Citation for published version (APA):
Venkatraman, S., Alazab, M., & Vinayakumar, R. (2019). A hybrid deep learning image-based analysis for
effective malware detection. Journal of Information Security and Applications, 47, 377-389.
https://doi.org/10.1016/j.jisa.2019.06.006

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 15. Aug. 2022

https://doi.org/10.1016/j.jisa.2019.06.006
https://researchers.cdu.edu.au/en/publications/ff43ac2c-54d1-4463-945e-12775af3e666
https://doi.org/10.1016/j.jisa.2019.06.006

 1

A Hybrid Deep Learning Image-Based Analysis for Effective

Malware Detection

Sitalakshmi Venkatraman,1 Mamoun Alazab2 and Vinayakumar R3

1 Department of IT, Melbourne Polytechnic, Prahran Campus, VIC 3181, Australia.
2 Charles Darwin University, Darwin, NT 0810, Australia.

3Center for Computational Engineering and Networking (CEN), Amrita School of
Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India

Abstract

The explosive growth of Internet and the recent increasing trends in automation using
intelligent applications have provided a veritable playground for malicious software (malware)
attackers. With a variety of devices connected seamlessly via the Internet and large amounts
of data collected, the escalating malware attacks and security risks are a big concern. While a
number of malware detection methods are available, new methods are required to match with
the scale and complexity of such a data-intensive environment. We propose a novel and unified
hybrid deep learning and visualisation approaches for an effective detection of malware. The
aim of the paper is two-fold: 1. to present the use of visualisation techniques for detecting
suspicious behaviour of systems, and 2. to propose and investigate the application of hybrid
visualisation approaches including deep learning architectures for an effective malware
classification. The performance is measured by employing various similarity measures of
malware behaviour patterns as well as cost-sensitive deep learning architectures. The
scalability is benchmarked by testing our proposed hybrid approach with both public and
privately collected large malware datasets that show high accuracy of our malware classifiers.

Keywords: Malware detection, Similarity mining, Image analysis, Evaluation metrics, Machine
learning, Deep learning architectures.

1. Introduction

We are facing increasing security breaches with the fourth industrial revolution (Industry
4.0) driven by Internet technologies and intelligent automation worldwide. It is important to
develop defence systems against attacks through malicious software (malware) that can disrupt
businesses by affecting their computing systems, data and applications without the user
permission and authentication [1][2]. The term ‘malware’ covers a wide range of malicious
code such as a computer virus, a worm or a potentially unwanted programs (PUP) that can lead
to a denial of service attack. Today, several malicious attacks are caused by unknown variants
of existing malware, that obfuscate their behaviour to evade from detection [3]. With the huge
variety of opensource software and seamless installation of applications on the rise via the

 2

Internet, it is a major challenge to effectively detect such new obfuscated malwares that are
being stealthily generated in largescale. Therefore, malware detection solutions are evolving
in the field of cyber security and this paper takes a modest step forward in this research
direction.

For several decades, anti-virus software solutions form the most commonly used
commercial systems for the detection and mitigation of malware. Traditionally, such solutions
were based on virus signatures that required human intervention to supervise and update the
signature database when new malwares were encountered. More recently, self-learning systems
are being developed which have the capability to alleviate the limitations of signature-based
systems. Self-learning systems are capable of employing data mining, machine learning and
deep learning methods which can facilitate the learning of complex virus patterns to distinguish
between the benign and malware binaries. However, different self-learning approaches exhibit
degrees of variability in their capability to detect variants of existing malware or even an
entirely new malware. Several research studies are being conducted to explore the suitability
of different approaches of self-learning techniques for malware detection, and to compare the
scalability and performance of such models with a variety of datasets. It is important to first
understand the fundamental approaches employed as well as the malware obfuscation
techniques adopted by hackers in order to propose innovative solution models to match with
this cyber security problem.

The most commonly applied malware detection approach falls under two main techniques:
static and dynamic analysis [4-7]. Most of the commercial systems use hybrid of static and
dynamic analysis for malware detection. Static analysis uses the syntax and structural
properties of a file by disassembling the program binary in order to extract the features. On
the other hand, dynamic analysis of the file is required to be conducted during its running time
in order to extract characteristic actions performed by the program. Previous studies have also
combined static and dynamic approaches [8][9]. New approaches are required in order to
improve the technique of detecting different obfuscations of malware being increasingly
launched by the hackers and recent studies have compared static, dynamic and hybrid
approaches arriving at various implications [10].

Malware writers adopt several obfuscation techniques using metamorphic and
polymorphic variants of an existing malware family to evade detection [3][10]. In addition, the
entire program binary could be obfuscated using packing methods to ensure that the code can
only be analysed at runtime [11]. Reverse engineering of such non-standard and custom–made
packing is labour-intensive and requires the binary to be executed in a virtual environment for
unpacking [12]. Hence, intelligent approaches such as machine learning that are capable of
incorporating self-learning traits of a human expert are being developed.

Machine learning models for both static, dynamic and hybrid analysis of malware have
been investigated showing promising results to detect obfuscated malware and their
implications have been studied [10][13][14][15][16]. A number of static malware detection
approaches have differentiated their work by exploring different classifiers such as Support
Vector Machine (SVM), Hidden Markov Models (HMM) k-Nearest Neighbor (KNN), Naïve
Bayes (NB), etc. [17][18]. In general, for techniques based on dynamic analysis, various traces
of the behaviour patterns of malware are analysed by executing it. In literature, two commonly
used approaches for dynamic analysis are control flow analysis and API call analysis
[3][5][13]. Overall, several feature-based approaches, including high-level API calls as well
as low-level opcodes for n-grams based malware detection, have been explored in previous
studies [18-20]. In this work, we have adopted machine learning and similarity mining
approaches that have been effectively applied to both static and dynamic malware detection
with deep learning image-based analysis as the focus.

 3

Semi-automated data analysis methods require the malware analysts to analyse and
interpret intermediate results that can be time-consuming and hence self-learning and
intelligent frameworks are proposed [21][22]. Image-based techniques could provide
sophisticated visual aids in detecting suspicious unknown malware in order to alert anomalous
behaviour patterns quickly. Visual representations of malware patterns have the advantage of
providing a summarised picture of possible attacks. Visual analytics along with analytical
reasoning of human experts could speed-up the malware detection process [23][24]. In visual
analytics, similarity mining is a machine learning method based on the analysis of similarities
of the distance measures and has been recently adopted to detect malware. This work has
advanced further from previous studies by using image analysis for malware detection [24]. In
this paper, we propose a hybrid model by employing similarity mining and deep learning
architectures for image- analysis. An image comparison of different malware families as well
as benign datasets are used to visually demonstrate the significant difference in the behaviour
patterns of the malware families. Further, deep learning techniques are employed to facilitate
self-learning so as to achieve high accuracy in our proposed classifiers.

Overall, the main contributions of our proposed model are:
1. Proposal of a hybrid deep learning model for malware detection and classification by

employing image-based machine learning techniques that are computationally cost-
effective and scalable.

2. In-depth performance analysis of various classical machine learning and deep learning
techniques on different public and private datasets for evaluating our proposed
architectures in terms of their efficacy in dealing with large datasets of new malware
families.

We have organised the overall structure of the paper as follows. Section 2 provides related
work of image-based analysis in the area of computer security. The proposed hybrid model
adopted for this study is presented in Section 3. Section 4 describes the experimental setup
and the datasets used for the study. The results of the performance evaluation of our proposed
model indicating high classification accuracy achieved using machine learning and deep
learning architectures are presented in Section 5. Finally, we provide our conclusions,
highlighting the limitations of the study and future research work in Section 6.

2. Related Work

Many image-based analysis using similarity of patterns fall under two main categories: (1)
projection-oriented or (2) semantic-oriented [25]. In the field of computer security,
visualisation tools have evolved over a period of time and they are becoming more useful for
processing massive data with large files. Two-dimensional visualisation of a similarity matrix
is a traditional technique used to capture the relevant similarity measures between objects
[26][27]. It provides three key properties: (i) once the similarity space is formed, the high-
dimensionality of the data does not affect further processing; (ii) clusters of equal importance
get formed, and (iii) clusters that are related to one another are shown adjacent to each other
aiding in visualisation of results [25]. It is a common practice to visually represent documents
as points on either a 2D or 3D plane. The distance between each pair of points show how similar
the two documents are, i.e., the closer they are, the more similar the two document contents are
[28] [29].

Recently, research studies have employed image-based analysis of network security
attacks [30]. Semi-automated techniques involve the visual investigation of secure shell (SSH)
brute force attempts that were identified by different colours for the various anomalies detected

 4

along with the details of UserIDs and Internet Protocol (IP) addresses [31]. Visualisation
techniques were also employed to display an overview of large packets at a time. Such images
show the relationships between network packets which helped security analysts to zoom into
further details [32]. Another study used image-based analysis to explain the chronology of a
malware attack such as a spear phishing attack with colours indicating which type of
connections to the system were successful [33]. Figure 1 shows the information on ‘what’,
‘where’ and ‘when’ of these connections and how the distances to other hosts could be
estimated using their IP addresses [34][35]. Various types of alerts are shown as separate
sectors of concentric rings in consecutive time intervals and the different possible attacks to
the same host are depicted with colour-coded connections. Most of these visual techniques
have adopted text-based image representations with different colours to analyse and detect
malware attacks. Such research studies are quite restricted with a focus on network traffic and
infiltration analysis [36][37]. Furthermore, these are time consuming in today’s world of Big
Data, and texture-based image analysis are being explored.

Figure 1: Visualisation of network connection types (what), resources (where) attacked, and the time (when).

Different sections of the executable binary are represented as unique image textures for
quicker analysis that can improve the productivity of a malware analyst. The advantage of such
a texture-based image analysis is that they can give more information about the structure of the
malware and could display even small code changes while retaining the whole structure of the
code. Figure 2 (a) shows different sections of the binary code displaying unique texture, which
is useful in identifying similar patterns [38]. For instance, Figure 2(b) shows similarity in the
images of four malware variants belonging to the same malware family called Dialplatform.B.

 5

4 variants of Win32.Dialplatform.B

(a) (b)
Figure 2: Images of variants of a malware family showing similarity of binary sections

The main limitation with texture-based image analysis of malware is that certain malware
obfuscations cannot be easily analysed. Malware could be packed using different packing
methods and with different resolution. Hence, there is a need for a robust method for
classifying malware using image-based analysis [39]. Recently, image features called gist
descriptors have been analysed in order to classify obfuscated malware and these techniques
have been compared with deep learning techniques to evaluate their robustness [40]. Several
such innovative techniques are being explored by researchers in order to address the major
challenge of obfuscated malware detection.

In this paper, we propose a hybrid model of various supervised and unsupervised
techniques to perform image analysis for detecting and classifying unknown malware
efficiently. By employing a variety of large public and private datasets we conduct
experimental studies to demonstrate how similarity mining combined with deep learning
architectures could be employed effectively in the proposed classifier. Our proposed model is
described in the next section.

3. Proposed Hybrid Model

Deep learning is a type of machine learning which has been used in various applications in
different domains. This is primarily due to the reason that the methods have the capability to
learn optimal feature representation implicitly by taking raw input samples. Recently, the
applications of deep learning architectures are employed for malware detection. In image-based
deep learning approaches, the malware binaries are converted into grayscale image
representation and deep learning architectures are employed to learn the complex features
(image patterns) [40][41][42][43][44][45]. Most commonly employed deep learning
architectures are convolutional neural network (CNN) and long short-term memory (LSTM).
The fundamental difference between these two methods is that CNN is capable of extracting
spatial features, while LSTM is capable to learn the sequence information. Both CNN and
LSTM can be combined to effectively learn both spatial and sequence information. A recent
study used TensorFlow for deep learning experiments relying on transfer learning and were
able to attain a testing accuracy of more than 98% [40]. In another work, CNN based method
was proposed for malware classification to handle the class imbalance problem achieving good
results as compared to the existing well-known methods based on classical machine learning
algorithms [41]. Another work had proposed a novel method to convert bytes file into image
representation and employed a deep learning architecture for classification [42]. To avoid the
class imbalance problem, their experiments had adopted random sampling and as well as class

 6

rebalancing sampling methods. The class rebalancing methods had performed better than the
existing classical machine learning based methods with highest F1-score. Some researchers
proposed a malware classification framework by employing SimHash to convert the
disassembled malware codes into grayscale images, and CNN for classification [43][44].
Another work had proposed static analysis of opcodes with malware classification performed
based on the combination of RNN and CNN [45]. Another research had adopted cost-sensitive
LSTM to handle class imbalance and the multi-class classification performed better than the
cost-insensitive LSTM [46].

This work has advanced further from a previous work that proposed a hybrid deep
learning-based framework for intrusion detection [47]. In the previous work, an optimal
machine learning model was developed by conducting several experiments using various
publicly available datasets. The results showed that the method had scaled well to handle large
amount of network events using both visualization and deep learning approaches to effectively
detect and classify attacks in a real-time environment. This work employs a similar
methodology with a distinct difference in the focus of classifying variants of malware into their
malware families using deep learning image-based analysis. The proposed hybrid architecture
using a combination of supervised and unsupervised learning models for image-based malware
classification is shown in Figure 3.

Figure 3: Proposed Architecture

The proposed architecture uses self-learning system which is capable of detecting not only the
known malware and the variants of known malware, but also unknown malware. More
importantly, the self-learning system uses classical machine learning and deep learning models
that capture the complex features of binaries which can be best utilized to distinguish between
the benign and malware binaries. The architecture composed of three different subsystems in
which one subsystem is based on unsupervised learning model and the other two are based on
supervised learning models. The pre-processing steps shown in Figure 3 are used to convert
the binary files into feature representations and then employ machine learning and deep
learning models. To enhance the malware detection rate, this type of hybrid system can be used
in real-time systems. All these subsystems use both classical and advanced machine learning

 7

models with image-based analysis to effectively learn the complex system behaviours of
malware binaries.
 The proposed deep learning architecture for malware classification uses CNN and bi-
directional pipeline. Miscalculation costs are included and in general, a malware family which
contains more number of malware samples includes less cost whereas malware family which
contains less number of samples includes higher cost. In the beginning, the cost matrix is
unknown and genetic algorithms are employed to find out an optimal cost matrix. However,
this method is time-consuming and leads to a high computational cost. Thus, to select an
optimal value for each sample, let us assume that at least one category sample has equal cost.
Let 𝑐𝑐[𝑖𝑖, 𝑖𝑖] denote the misclassification cost of the class i, which is generated using the class
distribution as defined in equation (1) given below:

𝑐𝑐[𝑖𝑖, 𝑖𝑖] = �
1
𝑛𝑛𝑖𝑖

� �
1
𝑛𝑛𝑖𝑖

�
𝛾𝛾

 (1)

where 𝛾𝛾 ∈ [0,1] is a trade-off parameters. When 𝛾𝛾 = 1, 𝑐𝑐[𝑖𝑖, 𝑖𝑖] is inversely proportional to the
class size 𝑛𝑛𝑖𝑖 and when 𝛾𝛾 = 0 , the cost-sensitive LSTM reduces to the original LSTM, which
is cost-insensitive. To find an optimal value for 𝛾𝛾, we run 3 runs for the proposed architecture
with values in the range 0 to 1. The proposed architecture performed well with 𝛾𝛾 = 0.2.
Convolutional neural network (CNN) is an improved model of classical neural network which
has performed well in various long-standing artificial intelligence tasks in the field of computer
vision. Primarily, a CNN is composed of three different layers, convolutional, pooling and fully
connected. The convolution layer contains a convolution operation that uses filters to slide over
the image to capture features. By using Rectified Linear Units (ReLU), these features are
mapped into non-linear space called feature maps. Since the dimension of the feature map can
be very large, we use pooling to reduce the dimension. The most commonly used pooling
operations are the max, min and average functions, and we employ max-pooling. The pooling
features are passed into bidirectional Gated Recurrent Unit (GRU) which learns the sequential
information of the byte sequences, and finally, the features are passed into the fully connected
layer. We use a non-linear activation function for classification, and the most commonly used
functions are sigmoid for binary and softmax for multi-class classification respectively. To
reduce the loss during training, we used categorical cross entropy, which is defined
mathematically in equation (2) given below:

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝, 𝑒𝑒) = � 𝑝𝑝(𝑥𝑥) log�𝑒𝑒(𝑥𝑥)� (2)

𝑥𝑥

where 𝑥𝑥 denotes an input, 𝑒𝑒 and p denoting true probability distribution and predicted
probability distribution respectively.

Image-based techniques make use of visual images of either binary data or behaviour logs
of the malware samples [48][49]. Feature-based techniques compare different malware
samples based on extracted features [15]. Previous studies have considered a combination of
both image-based and feature-based techniques for malware classification without execution
or disassembly of malware code as shown in Figure 2 [38][50]. However, due to their
limitations in operating with only selected file formats and packing methods, we propose new
image-based analysis techniques to include similarity mining of behaviour patterns of malware.
In another related work, opcode sequences are converted into RGB pixels in an image matrix
and the similarity of image matrices are computed [51]. Our approach is different in two ways
based on enhancements from previous work [18][19][20][24][47]. Firstly, we make use of large

 8

datasets of about 52,000 malware samples collected privately in previous work as well as
commonly used public datasets for benchmarking our study. Secondly, using similarity
matrices and deep learning architectures, we adopt a hybrid approach of feature-based
technique and image-based analysis for accurately profiling malware binaries. Such a hybrid
deep learning architecture was not attempted before. the purpose is to evaluate the performance
enhancements.

Our proposed hybrid model for malware analysis consists of one unsupervised learning
model and two supervised learning models as shown in Figure 3. The pre-processing stage
involves adoption of multiple techniques of packed binary detectors to separate packed and
unpacked files from the dataset [19][20]. In the pre-processing stage, a controlled execution
environment is employed to retrieve the raw messages to arrive at the function calls executed
that belong to the executables from the dataset. The pre-processing stage of processing such a
privately collected dataset of about 52,000 binary samples indicates that about 77% of malware
are packed and 23% are unpacked. The feature processing stage involves applying feature
extraction techniques effectively to conduct feature analysis using data mining techniques. All
executable programs perform an action using API function calls, and a statistical analysis of
the Windows API calling sequence reflects the behaviour of a particular piece of code. Binary
n-gram features were also extracted for analysis for performing n-gram statistical modelling to
obtain the distribution of the executables for a range of n-values varying from 1 to 5. Extracting
binary n-gram features to complement the API call features has uniquely helped to train the
classifiers correctly. Overall, the first supervised learning model uses a private dataset to train,
validate and test, an array of machine learning classifiers, including support vector machine
(SVM) methods. A similarity matrix is generated for each comparison of the these features and
is passed through the similarity measure module to generate the similarity report.

Table 1 and Table 2 provide an illustration of the similarity matrices for malware in the
same family. They both represent malware variants of each family being compared. Table 1
shows the similarity matrix of the malware family Trojan.Downloader.Win32.Dadobra, while
Table 2 shows the similarity matrix of the malware family Worm.Win32.Delf. The table
columns are the binary file extensions representing the different versions or variants of the
same malware family. For example, the columns “.aa” and “.aj” in Table 1 refer to two the file
extensions of the variants of the malware TrojanDownloader:Win32/Dadobra. For the
similarity score, we adopted the Cosine similarity metric, which is the standard distance
measure to compute the similarity between two vectors as given in equation (3). Cosine
similarity has been used successfully in information retrieval and malware detection.

cos(𝑎𝑎, 𝑏𝑏) =
𝑎𝑎. 𝑏𝑏

�|𝑎𝑎|2|𝑏𝑏|2
 (3)

The similarity scores, which range between -1 to 1, are calculated for developing the similarity
matrices for various malware families. The values in each matrix are then given different colour
schemes based on the different distances from the threshold values. The image patterns
developed are compared with other samples to identify groups or malware families.

For the image analysis, the image features are extracted from a pre-trained deep
convolutional neural networks (CNN) model and then clustered in the image feature space
using k-means clustering algorithm. In general, the extracted malware features ffom the CNN
model is high dimensional. Hence these are passed into t-Distributed Stochastic Neighbor
Embedding (t-SNE) algorithm, which uses the concept of principal component analysis (PCA)
technique. The PCA reduces the high-dimensional features into two principal component
features. Finally these features are visualized by plotting the first feature on the X axis and

 9

second feature on the Y axis. Figure 4 shows the distance from the centroid of the first two
principal component features of the malware data points plotted over X and Y axes. Different
colours shown in Figure 4 correspond to the 6 different malware families obtained according
to the k-means clustering algorithm.

Figure 4: Malware data with k-means clustering over two principal component features (X-Y axes)

While arriving at the similarity matrix, the classification methods require the training data

to validate the threshold values that are formulated in these models. We adopt the K-fold cross-
validation method to evaluate the results obtained from the statistical analysis. By having
K=10, 90% of the full dataset is used for “training” (and 10% for “testing) for each of the
independent 10-folds. In order to achieve a higher accuracy of the predictive model for
generalisation, K-fold cross-validation approach was used and applied for test data, with k=10.
The evaluation of both feature selection and classification were done in a 10-fold cross-
validation loop for all the malware and benign datasets. Then SVM was applied to the
“training” dataset with the goal to produce a predictive model for the “testing” dataset.
Different similarity mining metrics using eight different distance measures were employed for
benchmarking of the results. The accuracies achieved for malware classifications were
compared based on the following standard measures:

1. True Positive (TP): Number of correctly identified malicious code,
2. False Positive (FP): Number of wrongly identified benign code, when a detector

detects benign file as a malware.
3. True Negative (TN): Number of correctly identified benign code.
4. False Negative (FN): Number of wrongly identified malicious code, when a

detector fails to detect malware.
The efficiency of the proposed hybrid model was evaluated using the following performance
measures:

Positive (P): The predicted attribute belongs to the right class.
𝑃𝑃 = 𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹

Negative (N): The predicted attribute belongs to the wrong class.

𝐹𝐹 = 𝐹𝐹𝑃𝑃 + 𝑇𝑇𝐹𝐹

Overall Accuracy giving the percentage of correctly classified binary is given by:

 10

𝑂𝑂𝑂𝑂𝑒𝑒𝑂𝑂𝑎𝑎𝑙𝑙𝑙𝑙 𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑂𝑂𝑎𝑎𝑐𝑐𝐴𝐴 =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹

𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹
=

𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹
𝑃𝑃 + 𝐹𝐹

 (4)

In previous research studies, API calls have been analysed to profile malwares and their

families [18][19][20]. In this study, we have enhanced the recent research work [22][24][52]
by developing a hybrid model of machine learning and deep learning architectures with a focus
to improve the image-based feature in terms of higher performance and scalability. Further, we
have conducted validation of results with well-known benchmarked public datasets, such as
Microsoft Malware Classification Challenge (BIG, 2015) and the Malimg. The experimental
details and the findings of the study are presented in the subsequent sections.

4. Experimental Setup, Datasets and Results

We conducted the experimental investigation of our proposed hybrid model using different
datasets. Firstly, the similarity analysis was carried out by implementing distance measures and
analysis of the various data mining algorithms in Python Programming Language. The
experiment was run in three different processors, which aided in the effective malware
classification and was evaluated using very large real-life malware dataset consisting of about
75,000 samples obtained through public databases such as VX Heavens [53]. More than two-
thirds of the samples were malware and the remaining were benign samples. The similarity
distance system developed in this research was able to automatically identify all malware
variants. Table 1 and Table 2 provide an illustration of the similarity matrices for malware in
the same family. In these matrices, the similarity measures calculated are colour-coded based
on the distance from the threshold values. These distance measures can take values between 0
and 1, and highly positive correlations (closer to a value of 1) are displayed in blue colour
which represents high similarity, while low correlations (closer to a value of 0) are displayed
in red colour to represent low similarity. We scaled the distance measures (m) from the [0, 1]
range to the similarity metric [-1, 1] range by transposing the values using the formula, ((1 -
m) - 0.5)*2. Also, we made use of the color intensity and the size of the circle to be proportional
to the correlation coefficients. We employed the R corrplot function to convert the correlation
matrix into a graph Correlogram.

An image pattern analysis of the visual representations show that the entire Table 1 has a
close similarity to the known malware called Win32.Dadobra (a Trojan), and Table 2 is closely
similar to the known malware called Win32.Delf (a Worm). Further, we conducted
experimental comparisons between each pair of malware families to understand whether their
behaviour patterns were similar. As an example, Table 3 shows the similarity matrix between
two different malware families Win32.Dadobra and Win32.Delf, and Table 4 shows the
similarity matrix obtained for all the benign files.

From the experimental results obtained with similarity matrices, it was evident that the
obfuscated malware or variants from the same family exhibited high similarity in the image
patterns, while different families of malware exhibited clearly different image patterns. Also,
the experiments confirmed that there is no similarity among the different benign files, but they
exhibit a similar image representation of the similarity matrix, which is uniquely different from
that of malware.

 11

Table 1: Similarity matrix of the malware familyTrojan.Downloader.Win32.Dadobra.

Table 2: Similarity matrix of the malware family Worm.Win32.Delf.

 12

Table 3: Similarity matrix of two malware families Trojan.Downloader.Win32.Dadobra vs Worm.Win32.Delf.

Table 4: Similarity Matrix of Benign Files

 13

We performed further experimental studies to benchmark our proposed hybrid deep learning
model by employing two publicly available datasets: i) Microsoft Malware Classification
Challenge (BIG, 2015) dataset [42] and ii) Malimg dataset [54]. The first dataset contains
10,868 samples and 9 malware families of labelled training dataset that is publicly available on
Kaggle. The detailed statistics across each malware family is shown in Table 5. The second
dataset contains 9,342 grayscale images of 25 malware families from which we prepared
disjoint datasets of 70% for training and the remaining 30% for testing. To conduct the
experimental study, we implemented the deep learning architectures using TensorFlow with
Keras higher level API on the GPU enabled computers in single NVidia GK110BGL Tesla k40
[43] [44]. A detailed analysis of the results and observations of our experimental study are
provided in the subsections.

Table 5 Detailed statistics of dataset

Malware Family Number of Samples
Ramnit 1,541
Lollipop 2,478
Kelihos_ver3 2,942
Vundo 475
Simda 42
Tracur 751
Kelihos_ver1 398
Obfuscator.ACY 1,228
Gatak 1,013

There are two types of metrics, namely micro-averaging and macro-averaging to identify

the quality of the overall classification of a model. In macro-averaging, a metric is averaged
over all classes and they are treated equally. On the other hand, micro-averaging is based on
the cumulative True Positive (TP), False Positive (FP), True Negative (TN) and False Negative
(FN). In general, the micro-averaging types give importance to the classes that have more
samples, while macro-averaging types give better indicators for a multiclass imbalance
problem. Hence, in the study, due to the multiclass imbalance nature of the publicly available
datasets, we have adopted macro-averaging as the metric for the experimental evaluation. The
metrics used, namely Macro averaging Precision, Recall and F1-score are defined in equations
(5), (6) and (7) respectively:

𝑃𝑃𝑂𝑂𝑒𝑒𝑐𝑐𝑖𝑖𝑙𝑙𝑖𝑖𝑙𝑙𝑛𝑛𝑀𝑀 =
∑ 𝑇𝑇𝑃𝑃𝑖𝑖

𝑇𝑇𝑃𝑃𝑖𝑖 + 𝐹𝐹𝑃𝑃𝑖𝑖
𝑖𝑖

𝐹𝐹𝐴𝐴𝑁𝑁𝑏𝑏𝑒𝑒𝑂𝑂 𝑙𝑙𝑜𝑜 𝐶𝐶𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙𝑒𝑒𝑙𝑙
 (5)

𝑃𝑃𝑂𝑂𝑒𝑒𝑐𝑐𝑖𝑖𝑙𝑙𝑖𝑖𝑙𝑙𝑛𝑛𝑀𝑀 =
∑ 𝑇𝑇𝑃𝑃𝑖𝑖

𝑇𝑇𝑃𝑃𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖
𝑖𝑖

𝐹𝐹𝐴𝐴𝑁𝑁𝑏𝑏𝑒𝑒𝑂𝑂 𝑙𝑙𝑜𝑜 𝐶𝐶𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙𝑒𝑒𝑙𝑙
 (6)

𝐹𝐹1 − 𝑙𝑙𝑐𝑐𝑙𝑙𝑂𝑂𝑒𝑒𝑀𝑀 =
2

1
𝑃𝑃𝑂𝑂𝑒𝑒𝑐𝑐𝑖𝑖𝑙𝑙𝑖𝑖𝑙𝑙𝑛𝑛𝑀𝑀

+ 1
𝑅𝑅𝑒𝑒𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙𝑀𝑀

 (7)

 14

Microsoft Malware Classification Challenge (BIG, 2015) Data Analysis using Deep
learning Architectures:

The malware samples in the datasets consisted of binary files that were converted into image
representations using the method proposed by [55]. This type of image representation preserves
the sequential order of the byte code in the binary files. Since the recurrent neural network
(RNN) architectures are well-known methods used for sequential data modelling tasks, we
stack RNN with CNN for evaluating our proposed hybrid deep learning model. This achieved
the best performance for our experimental study as compared to adopting CNN model alone.
The learnable parameter details of existing CNN architectures that adopted Unidirectional
LSTM (UniLSTM), and Bidirectional LSTM (BiLSTM), as well as for proposed
Unidirectional GRU (UniGRU) and Bidirectional GRU (BiGRU) models are provided in
Table 6. We measured the performance of the deep learning models using 3-fold cross
validation as reported in Table 7. The parameter details for the best performed model are
shown in Tables 8 and 9. The proposed method performed better than the existing cost-
sensitive and cost-insensitive methods in all the experiments. More importantly, cost-sensitive
models outperformed cost-insensitive models. The detailed performances of the best performed
methods are provided in Tables 10 and 11. For all the malware families, the cost-sensitive
models obtained best F1-score as compared to the cost-insensitive models. Most importantly
the proposed cost-sensitive models showed performance improvement of 0.0969 for F1-score
as compared to the existing methods. The proposed architecture contains less number of
parameters compared to the existing methods and hence it can even reduce the computational
complexity in both the training and testing stages.

Table 6 Parameter Details

Architecture #Learnable parameters
CNN [55] 105,569
CNN UniLSTM [55] 155,669
CNN BiLSTM [55] 268,949
CNN UniGRU (Proposed) 127,637
CNN BiGRU (Proposed) 212,885

Table 7 Results of 3-fold cross-validation

Architecture Type F1-score (Macro)
CNN [55] Cost-insensitive 0.598
CNN UniLSTM [55] Cost-insensitive 0.664
CNN BiLSTM [55] Cost-insensitive 0.671
CNN UniGRU (Proposed) Cost-insensitive 0.669
CNN BiGRU (Proposed) Cost-insensitive 0.678
CNN UniLSTM (Proposed) Cost-sensitive 0.662
CNN BiLSTM (Proposed) Cost-sensitive 0.687
CNN UniGRU (Proposed) Cost-sensitive 0.675
CNN BiGRU (Proposed) Cost-sensitive 0.711

 15

Table 8 Configuration details of CNN BiLSTM [55]

Layer (type) Output Shape Parameter #
conv1d_1 (Conv1D) (None, 9994, 30) 240
max_pooling1d_1 (MaxPooling1

(None, 1998, 30)
0

conv1d_2 (Conv1D) (None, 1992, 50) 10550
max_pooling1d_2 (MaxPooling1

(None, 398, 50)
0

conv1d_3 (Conv1D) (None, 392, 90) 31590
max_pooling1d_3 (MaxPooling1

(None, 78, 90)
0

bidirectional_1 (Bidirection
(None, 256)

224256

dense_1 (Dense) (None, 9) 2313
Total parameters: 268,949 Trainable: 268,949 Non-trainable: 0

Table 9 Configuration details of CNN BiGRU

Layer (type) Output Shape Parameter #
conv1d_1 (Conv1D) (None, 9994, 30) 240
max_pooling1d_1 (MaxPooling1

(None, 1998, 30)
0

conv1d_2 (Conv1D) (None, 1992, 50) 10550
max_pooling1d_2 (MaxPooling1

(None, 398, 50)
0

conv1d_3 (Conv1D) (None, 392, 90) 31590
max_pooling1d_3 (MaxPooling1

(None, 78, 90)
0

bidirectional_1 (Bidirection
(None, 256)

168192

dense_1 (Dense) (None, 9) 2313
Total parameters: 212,885 Trainable: 212,885 Non-trainable: 0

Table 10 Detailed 3-fold cross validation based on cost-sensitive CNN BiLSTM architecture

Malware Family Precision Recall F1-score
Ramnit 0.4883 0.977 0.5876
Lollipop 0.9842 0.6256 0.7329
Kelihos_ver3 0.9964 0.6648 0.7644
Vundo 0.7809 0.6512 0.6805
Simda 0.6087 0.5159 0.5284
Tracur 0.9122 0.6382 0.7163
Kelihos_ver1 0.9875 0.6377 0.7422
Obfuscator.ACY 0.9663 0.5825 0.6975
Gatak 0.9445 0.6437 0.7317
Average 0.897 0.685 0.713
Macro 0.852 0.66 0.687

 16

Table 11 Detailed 3-fold cross validation based on cost-sensitive CNN BiGRU architecture

Malware Family Precision Recall F1-score
Ramnit 0.4924 0.9896 0.5954
Lollipop 0.9903 0.6461 0.74927
Kelihos_ver3 0.9993 0.6654 0.7656
Vundo 0.9007 0.6533 0.7255
Simda 0.756 0.5714 0.6253
Tracur 0.9482 0.6449 0.7355
Kelihos_ver1 0.9409 0.6499 0.7359
Obfuscator.ACY 0.9731 0.6115 0.7199
Gatak 0.970 0.6469 0.7435
Average 0.909 0.696 0.725
Macro 0.886 0.675 0.711

Malimg Data Analysis using Deep learning architectures:

We evaluated the various deep learning models using Malimg dataset and the results are
reported in Table 12. The class-wise performances of the best performed model are provided
in Table 13. The proposed model performed better than the existing method [56] and the cost-
sensitive model showed good performance over cost-insensitive models. The performance can
be further enhanced by identifying optimal parameter values for deep learning architectures.

Table 12 Detailed test results

Model Type Accuracy Recall Precision F1-
Score

CNN [56] Cost-insensitive 0.943 0.892 0.898 0.893
CNN (Proposed) Cost-sensitive 0.948 0.897 0.914 0.903
CNN BiLSTM [55] Cost-insensitive 0.951 0.901 0.910 0.904
CNN BiLSTM (Proposed) Cost-sensitive 0.958 0.907 0.909 0.908
CNN BiGRU (Proposed) Cost-insensitive 0.960 0.912 0.918 0.914
CNN BiGRU (Proposed) Cost-sensitive 0.963 0.915 0.918 0.916

Table 13 Class-wise performance: True Positive Rate (TPR) and False Positive Rate (FPR)

Family Family Name CNN [56] CNN BiGRU
(Proposed) Cost-
sensitive

TPR FPR TPR FPR
Dialer Adialer.C 1.0 0.0 1.0 0.0
Backdoor Agent.FYI 1.0 0.0 1.0 0.0
Worm Allaple.A 0.9605 0.0146 0.9864 0.0083
Worm Allaple.L 0.9916 0.0103 0.9937 0.0026
Trojan Alueron.gen!J 1.0 0.0 0.9831 0.0

 17

Worm:AutoIT Autorun.K 1.0 0.0 1.0 0.0
Trojan C2Lop.P 0.4833 0.0062 0.6833 0.0091
Trojan C2Lop.gen!G 0.5909 0.0051 0.6363 0.0051
Dialer Dialplatform.B 1.0 0.0011 0.9622 0.0004
Trojan Downloader Dontovo.A 1.0 0.0011 1.0 0.0007
Rogue Fakerean 1.0 0.0004 1.0 0.0004
Dialer Instantaccess 1.0 0.0007 1.0 0.0004
PWS Lolyda.AA 1 0.9219 0.0004 0.9844 0.0
PWS Lolyda.AA 2 0.9818 0.0 1.0 0.0004
PWS Lolyda.AA 3 1.0 0.0 1.0 0.0
PWS Lolyda.AT 1.0 0.0011 1.0 0.0007
Trojan Malex.gen!J 0.8537 0.0004 0.8780 0.0
Trojan Downloader Obfuscator.AD 1.0 0.0 1.0 0.0
Backdoor Rbot!gen 1.0 0.0 1.0 0.0
Trojan Skintrim.N 0.875 0.0 0.9583 0.0
Trojan Downloader Swizzor.gen!E 0.3947 0.0101 0.3947 0.0054
Trojan Downloader Swizzor.gen!I 0.425 0.0076 0.5 0.0076
Worm VB.AT 0.9508 0.0 0.9672 0.0007
Trojan Downloader Wintrim.BX 0.8621 0.004 0.8621 0.0014
Worm Yuner.A 1.0 0.0008 1.0 0.0

5. Performance Evaluation

We performed three trails of experiments for testing our proposed architecture using
various deep learning models. The experiments were run until 100 epochs with a batch size of
64, and by using adam optimizer with a learning rate of 0.001. The training and validation
performance of the deep learning architecture in terms accuracy and loss are shown in Figures
5 and 6 respectively. All the models increased the accuracy and decreased the loss gradually
across the epochs. More importantly, the models achieved better performance once it reached
50 epochs. Additionally, all the models have gradually increased the performance after 50
epochs.

 18

Figure 5: Comparison of training accuracy among cost-sensitive deep learning models.

Figure 6: Comparison of training loss among cost-sensitive deep learning models.

We had also conducted an experimental study using privately and publicly collected large

dataset from VX Heavens [53] to evaluate the performance of four variations of a machine
learning algorithm by comparing the accuracy of classification of malware and benign files.
The experimental results of our hybrid model of feature-based and image-based analysis using
similarity mining with eight different distance measures to detect and classify unknown
malware showed promising results. Similarity mining and deep learning architectures are

 19

effective to detect malware variants from the same family or different families of malware.
Also, the experiments confirm that there is no similarity among the different benign files, but
they exhibit a similar image representation of similarity matrix, which is uniquely different
from that of malware. In the classification algorithms, the training data and testing data were
selected by making a partition on the database of malware and benign files for carrying out the
experiments. We adopted the most common type of cross-validation namely, k-fold cross-
validation that is a standard practice adopted in similar research studies adopted for many
classifiers [57]. For the similarity mining, we adopted Sequential Minimal Optimization
(SMO) algorithm in Support Vector Machine (SVM) method with 4 different kernels; i) SMO-
Normalized Polynomial Kernel Function, ii) SMO-Polynomial Kernel Function, iii) SMO-
Radial Basis Function (RBF) and iv) SMO-Pearson VII kernel function (PUK). The advantage
of SMO is its ability to solve the Lagrange multipliers analytically with fast implementation of
SVM. Further, it is a popular supervised learning algorithm used for classification and
regression problems. In Figure 7, the overall accuracy rate for malware detection achieved
using the four kernels of SMO for our experimental datasets are shown. Normalized
Polynomial kernel provides the highest accuracy for all the k cross validations, with
k={2,3,4,5,6,7,8,9,10}. In particular, with k=10, we achieved about 98.6% accuracy for SVM
based malware detection which is among the best so far reported in literature using large
datasets.

Figure 7: Accuracy of malware classification using SMO with k cross validations (k=2 to 10)

Overall, image techniques are being adopted for an effective malware detection and deep
learning approaches are becoming more popular. Various researchers are performing several
studies in this direction. Recently, some research studies have employed novel malware
analysis techniques such as robust hashing and transfer learning for image-based malware
classification, reporting strong results of performance comparisons and benchmarking
[59][60]. In this paper, we have proposed a hybrid model for image analysis using various
similarity mining and deep learning architectures and have conducted a comparative study of
their performance with large private and public datasets.

75.00

80.00

85.00

90.00

95.00

100.00

2 3 4 5 6 7 8 9 10

NPoly PolyKernel RBF PUK Kernel

http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Regression_analysis

 20

6. Conclusions

This paper proposed a new hybrid model for image-based analysis using similarity mining
and deep learning architectures to identify and classify obfuscated malware accurately. We
calculated the similarities between the malware variants using eight different distance measures
to generate similarity matrices and to identify the malware family by adopting images of the
distance scores. Further, benchmarking using deep learning architectures were performed
resulting in high classification accuracies. We achieved almost 99% accuracy in the case of
SMO-Normalised Polynomial kernel, and our proposed cost-sensitive deep learning
architectures outperformed existing similar architectures from literature. We envisage that our
image-based approaches have effectively differentiated the behaviour patterns of different
malware families.

The proposed method performed better than the existing methods in both the malware
detection and classification. It required less computational cost as compared to the classical
machine learning based methods. Further, the proposed cost-sensitive deep learning based
model can be continuously trained in real-time to cope with the new malware.

We anticipate to further enhance our proposed framework as future work. The same set of
experiments could be run for more than 100 epochs to reach a better performance. Another
scope for future research could consider the intersection of our proposed approach with those
of other innovative image analysis techniques reported in the literature recently.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

[1] J. Aycock, Computer Viruses and Malware, Advances in Information Security). 1st Edn., Springer-
Verlag, New York, 2006.

[2] GAN Mohamed and NB Ithnin, ‘Survey on Representation Techniques for Malware Detection’, System
American Journal of Applied Sciences, 2017.

[3] I. You and K. Yim Malware Obfuscation Techniques: A Brief Survey, International Conference on
Broadband, Wireless Computing, Communication and Applications, 2010.

[4] M. Christodorescu and S. Jha, Static analysis of executables to detect malicious patterns, The 12th
conference on USENIX Security Symposium USENIX Association, Washington, DC, vol. 12, pp. 12-
12, 2003.

[5] M. Egele, T. Scholte, E. Kirda and C. Kruegel, A Survey on Automated Dynamic Malware Analysis
Techniques and Tools', ACM Computing Surveys, vol. 44, no. 2, pp. 1-49, 2012.

[6] M. Akour, I. Alsmadi and M. Alazab, "The malware detection challenge of accuracy," 2016 2nd
International Conference on Open Source Software Computing (OSSCOM), Beirut, pp. 1-6, 2016.

[7] SD. Nikolopoulos and I Polenakis, A graph-based model for malware detection and classification using
system-call groups. J Comput Virol Hacking Tech, vol.13, 29–46, 2017.

[8] M. Alazab, S. Huda, J. Abawajy, R. Islam, J. Yearwood, S. Venkatraman, and R. Broadhurst, A Hybrid
Wrapper-Filter Approach for Malware Detection, Journal of Networks, vol. 9, no. 11, pp. 2878-2891,
2014.

[9] M. Alazab, and S. Venkatraman, Detecting Malicious Behaviour Using Supervised Learning Algorithms
of the Function Calls. International Journal of Electronic Security and Digital Forensics. vol. 5, no. 2,
pp. 90-109, 2013.

[10] A. Damodaran, F.D. Troia, C.A. Visaggio,. T.H. Austin and M. Stamp A comparison of static, dynamic,
and hybrid analysis for malware detection Journal of Computer Virology and Hacking Techniques, vol.
13, no. 1, pp 1–12, 2017.

 21

[11] T. Brosch, , and M.. Maik Runtime packers: The hidden problem. Black Hat USA, 2006.
[12] L. Martignoni, M. Christodorescu, and S. Jha. Omniunpack: Fast, generic, and safe unpacking of

malware. Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual.
IEEE, 2007.

[13] A. Pektaş M. Çavdar and T. Acarman Android Malware Classification by Applying Online Machine
Learning. In: Czachórski T., Gelenbe E., Grochla K., Lent R. (eds) Computer and Information Sciences.
ISCIS 2016. Communications in Computer and Information Science, vol 659. Springer, 2016.

[14] M. Chowdhury, A. Rahman and R Islam, Malware analysis and detection using data mining and machine
learning classification. In: Abawajy J, Choo K-KR, Islam R (eds) International conference on
applications and techniques in cyber security and intelligence: applications and techniques in cyber
security and intelligence. Springer International Publishing, Cham, pp. 266–274, 2018.

[15] A Malhotra and K Bajaj, A hybrid pattern based text mining approach for malware detection using
DBScan. CSI Trans ICT, vol. 4, pp.141–149, 2016.

[16] A. Souri and R. Hosseini, A state-of-the-art survey of malware detection approaches using data mining
techniques Hum. Cent. Comput. Inf. Sci. vol. 8:, no. 3, pp. 1-22, 2018.

[17] N. Bagga, F. Troia and M. Stamp, On the Effectiveness of Generic Malware Models. In Proceedings of
the 15th International Joint Conference on e-Business and Telecommunications (ICETE 2018) - Vol. 1:
DCNET, ICE-B, OPTICS, SIGMAP and WINSYS, pp. 442-450.

[18] M. Alazab, M. Alkadiri S. Venkatraman and R. Broadhurst, Malicious Code Detection Using Penalized
Splines on OPcode Frequency, Proceedings of 3rd Cybercrime and Trustworthy Computing IEEE
Workshop, CTC 2012, Ballarat, 2012.

[19] M. Alazab, S. Venkatraman, P. Watters and M. Alazab,, Zero-day Malware Detection based on
Supervised Learning Algorithms of API call Signatures, Proceedings of AusDM2011 Ninth Australasian
Data Mining Conference, 1-2 December 2011, Ballarat, 2011.

[20] M. Alazab, Profiling and classifying the behaviour of malicious codes, Journal of Systems and Software,
vol. 100, no. 2, pp. 91-102, 2015.

[21] S. Venkatraman, ‘Autonomic Framework for IT Security Governance, International Journal of Managing
Information Technology (IJMIT), vol. 9, no. 3, pp. 1-14, 2017.

[22] R. Vinayakumar, M. Alazab, K.P. Soman, P. Poornachandran and S. Venkatraman, Robust Intelligent
Malware Detection Using Deep Learning. IEEE Access, vol. 7, pp. 46717-46738, 2019.

[23] E. Bou-Harb, M. Debbabi, C. Assi, Cyber scanning: A comprehensive survey. IEEE Communications
Surveys Tutorials, vol. 16, no. 3, pp. 1496–1519, 2014.

[24] S., Venkatraman, and M., Alazab, Use of Data Visualisation for Zero-Day Malware Detection. Security
and Communication Networks, pp. 1-13, 2018.

[25] N., Cao and W. Cui, Introduction to Text Visualisation, Atlantis Press, 2016.
[26] D. Keim, Information visualisation and visual data mining. IEEE Transactionson Visualisation and

Computer Graphics, vol. 8, no. 1, pp. 1–8, 2002.
[27] S. Few, Information Dashboard Design - The Effective Visual Communication of Data. Sebastopol, CA:

O’Reilly, 2006.
[28] N. Diakopoulos, D. Elgesem, A. Salway, A. Zhang and K. Hofland, Compare clouds: visualizing text

corpora to compare media frames. In: Proceedings of IUI Workshop on Visual Text Analytics, 2015.
[29] N. Diakopoulos, D. Elgesem, A. Salway, A. Zhang and K. Hofland, Compare clouds: visualizing text

corpora to compare media frames. In: Proceedings of IUI Workshop on Visual Text Analytics, 2015.
[30] H. Shiravi, A. Shiravi and A. Ghorbani, A survey of visualisation systems for network security. IEEE

Transactionson Visualisation and Computer Graphics, vol. 18, no. 8, pp. 1313–1329, 2012.
[31] WB. Balakrishnan, Security Data Visualisation, SANS Institute Inc., 2014.
[32] TY. Zhang, XM. Wang, ZZ. Li, F. Guo, Y. Ma and W. Chen A survey of network anomaly visualisation.

Scince China Information Sciences,. 2017, 60(12), 121101.
[33] W. Shanks, Enhancing Intrusion Analysis through Data Visualisation, SANS Institute,Inc., 2015.
[34] Foresti S, Agutter J, Livnat Y, et al. Visual correlation of network alerts. IEEE Comput Graph, 2006, 26:

48—59.
[35] M. Wagner, D. Sacha, A. Rind, F. Fischer, R. Luh, S. Schrittwieser, D. A. Keim and W. Aigner. Visual

Analytics: Foundations and Experiences in Malware Analysis. CRC/Taylor and Francis in book:
Empirical Research for Software Security: Foundations and Experience, Publisher: CRC/Taylor and
Francis, Editors: Lotfi ben Othmane, Martin Gilje Jaatun, Edgar Weippl, pp.139-171, 2017.

[36] G. Conti, Security data visualisation - graphical techniques for network analysis. San Francisco: No
Starch Press, 2007.

[37] R. Marty, Applied security visualisation. Upper Saddle River, NJ: AddisonWesley, 2009.

 22

[38] L. Nataraj, S. Karthikeyan, G. Jacob, and BS. Manjunath. Malware images: visualisation and automatic
classification. In Proceedings of the 8th international symposium on visualisation for cyber security, page
4. ACM, 2011.

[39] T. Songqing, Imbalanced Malware Images Classification: a CNN based Approach. CoRR
abs/1708.08042, 2017.

[40] S. Yajamanam, V. R. S. Selvin, F. Di Troia and M. Stamp, Deep learning versus gist descriptors for
image-based malware classification, 2nd International Workshop on Formal Methods for Security
Engineering (ForSE 2018), Funchal, Madeira, Portugal, January 22–24, 2018.

[41] Cui, Z., Xue, F., Cai, X., Cao, Y., Wang, G. G., & Chen, J. (2018). Detection of malicious code variants
based on deep learning. IEEE Transactions on Industrial Informatics, 14(7), 3187-3196.

[42] Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., & Ahmadi, M. (2018). Microsoft Malware
Classification Challenge. arXiv preprint arXiv:1802.10135.

[43] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November).
Tensorflow: a system for large-scale machine learning. In OSDI (Vol. 16, pp. 265-283).

[44] Gulli, A., & Pal, S. (2017). Deep Learning with Keras. Packt Publishing Ltd.
[45] Ni, S., Qian, Q., & Zhang, R. (2018). Malware identification using visualization images and deep

learning. Computers & Security.
[46] Sun, G., & Qian, Q. (2018). Deep Learning and Visualization for Identifying Malware Families. IEEE

Transactions on Dependable and Secure Computing.
[47] R Vinayakumar, M. Alazab, KP, Soman P. Poornachandran, A.Al-Nemrat, and S.Venkatraman. Deep

Learning Approach for Intelligent Intrusion Detection System..in IEEE Access, vol. 7, pp. 41525-41550,
2019.

[48] A. Long, J. Saxe and R. Gove. Detecting malware samples with similar image sets. In Proc. 11th
Workshop on Visualisation for Cyber Security, VizSec, ACM, 2014.

[49] KS., Han, JH. Lim and EG. Im, Malware analysis method using visualisation of binary files. In Proc.
Research in Adaptive and Convergent Systems, RACS, pp. 317–321, 2013.

[50] KS. Han, JH. Lim, B. Kang and EG. Im, Malware analysis using visualized images and entropy graphs.
Int. Journal of Information Security, vol. 14, no. 1, pp. 1–14, 2015.

[51] K. Han, B. Kang and EG. Im, Malware analysis using visualized image matrices. The Scientific World
Journal, Hindawi, vol. 15, 2014.

[52] S. Venkatraman and M. Alazab, Classification of Malware Using Visualisation of Similarity Matrices’,
Cybersecurity and Cyberforensics Conference (CCC), 21-23 Nov 2017. London IEEE Explore, pp. 3 –
8, 2017.

[53] VX Heavens. (n.d.). Retrieved from http://vx.netlux.org/lib.
[54] Nataraj, L., Karthikeyan, S., Jacob, G., & Manjunath, B. S. (2011, July). Malware images: visualization

and automatic classification. In Proceedings of the 8th international symposium on visualization for
cyber security (p. 4). ACM.

[55] Q. Le, O., Boydell, BM. Namee, and M. Scanlon, Deep learning at the shallow end: Malware
classification for non-domain experts. Digital Investigation, 26, S118-S126. 2018.

[56] Cui, Z., Xue, F., Cai, X., Cao, Y., Wang, G. G., & Chen, J. (2018). Detection of malicious code variants
based on deep learning. IEEE Transactions on Industrial Informatics, 14(7), 3187-3196.

[57] J. Yan, Y Qi, and Q. Rao, Detecting Malware with an Ensemble Method Based on Deep Neural Network,
Security and Communication Networks. Vol. 2018 (2018), Article ID 7247095, 2018.

[58] W-C. Huang, F. Troia and M. Stamp, Robust Hashing for Image-based Malware Classification. In
Proceedings of the 15th International Joint Conference on e-Business and Telecommunications (ICETE
2018) - Vol. 1: DCNET, ICE-B, OPTICS, SIGMAP and WINSYS, pp. 451-459.

[59] N. Bhodia, P. Prajapati, F. Di Troia and M. Stamp, Transfer Learning for Image-Based Malware
Classification, arXiv.org , arXiv:1903.11551, 2019.

	A Hybrid Deep Learning Image-Based Analysis for Effective Malware Detection
	Abstract
	1. Introduction
	2. Related Work
	3. Proposed Hybrid Model

