Tradeoffs between pasture production and other ecological attributes of pasture systems in central Queensland, Australia

Sangha, Kamaljit K.; Midmore, David J.; Rolfe, John; Jalota, Rajesh K.

Published in: Agriculture, Ecosystems and Environment

DOI: 10.1016/j.agee.2005.05.007

Published: 01/12/2005

Document Version Peer reviewed version

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Tradeoffs between pasture production and plant diversity and soil health attributes of pasture systems of central Queensland, Australia

Kamaljit K. Sangha, David J. Midmore, John Rolfe, and Rajesh K. Jalota

Plant Sciences Group, Primary Industries Research Centre, Central Queensland University, Rockhampton, Queensland 4702
Emerald Campus, Central Queensland University, Emerald 4720, Queensland.
Centre for Environment Management, Central Queensland University, Emerald Campus, Queensland 4720

Postal address for correspondence:
Kamaljit K. Sangha
School of Business, James Cook University, Townville, Queensland, Australia 4811
Email: kamaljit.sangha@jcu.edu.au
Fax: +61 7 4781 4019
Ph: +61 7 4781 4260
Abstract

Clearing land of trees and introduction of exotic pastures to enhance pasture production and hence monetary gains is generally practised in Queensland. Large areas of land have been cleared in the past and clearing continues currently. The results from many previous studies on tree clearing emphasised the gains in pasture production, but over periods of less than 10-15 yrs after clearing, thus potentially misleading land managers who plan to continue grazing beyond that time. The present research follows an integrated approach to study the pasture yield and the ecological effects of tree clearing over time-since-clearing on a grazing property in central Queensland, and to evaluate the implications of our findings for the region. The cleared pasture systems were taken at three different times of clearing i.e. 5 yr, 11-13 yr and 33 yr, in comparison to their paired uncleared pastures for three major types of tree communities (representative of the region) *Eucalyptus populnea*, *Eucalyptus melanophloia* and *Acacia harpophylla*, selected on a grazing property.

The effects of clearing were determined for pasture production, pasture plant species, soil properties (organic carbon, available N (NO$_3^-$), pH$_w$ and microbial biomass (C and N)), and litter production across three different ages of clearing and uncleared treatments of each tree community. With clearing, pasture production generally increased but, plant diversity, litter production and potential return of N and P through litter decreased. Among soil attributes, clearing of trees adversely impacted upon soil pH and microbial biomass, which play an important role in nutrient availability and mineralisation.
The paper evaluates the effects of clearing on individual attributes as well as an integrated effect of these attributes, i.e., overall ecological services. The multivariate analysis for the above mentioned ecological attributes suggested that at the 33 yrs age of clearing, the ecological state of pasture systems changed compared to that at 5 yr or 11-13 yr or at uncleared system. Most likely, a disturbed pasture system may take longer to revert to the original state compared to the time that would have taken to harvest the benefits. Tree clearing may project initial production gains for developing pastures, but these gains are not sustainable over time and are accompanied with loss of plant diversity, soil microbial biomass and nutrient return through litter, and change in soil pH. The results are important for landholders and policy makers to understand the actual benefits or losses of tree clearing for pasture development over a long term.

Key words: Tree clearing, soil organic carbon, soil pH, soil nitrate, soil microbial biomass, pasture yield, litter production, ecosystem functions
1. Introduction

Tree clearing has commonly been practised for greater pasture production and monetary gains in grazing systems of Queensland until recently. Most of the cleared land is then sown to exotic grass species such as *Cenchrus ciliaris* L. following raking and burning of wooden logs, thus sets up monoculture pastures. The high rates of clearing in the past especially after 1950s, and even lately in 1999-2001, 577,000 ha of land cleared per year (Department of Natural Resources and Mines, 2003), was mainly to develop pastures (94% of total cleared land in 1999-2001). Until 1985, even government policies favoured clearing to develop land for pastoral and agricultural systems (Boulter et al., 2000). Recently, a change in government policies to stop land clearing from 31st of August 2004 was implemented, based mainly upon the losses of biodiversity, without much access to information on the long term effects of clearing on productivity of pasture systems or on soil properties which are equally important for a landholder. Thus, it becomes difficult for the landholders to understand and adapt to the change in governmental policies from clearing (until 1985; Boulter et al., 2000) to that more recently of no clearing, without provision of information on the long-term effects of clearing.

Most studies to date (Scanlan and Burrows, 1990; Burrows, 1993; Burrows et al., 1999) have highlighted the production gains from clearing, but these were limited to <10 years of age of cleared pastures (Scanlan, 2002). Indeed, the initial gain in pasture production with clearing is the only attractive phase for the landholders to clear land for pastures. These earlier studies highlighted the gains in pasture production, but without considering the associated loss of other ecological services. There are increasing concerns that most of the
development that occurred in the past involved little understanding of ecosystem functions and of the inherent potential of natural resources available on the Australian continent (Boulter et al., 2000).

For this, three major woodland communities, each dominated by *Eucalyptus populnea* F. Muell., *E. melanophloia* F. Muell. and *Acacia harpophylla* F. Muell. ex. Benth. were selected on one property to quantify the impacts of clearing on pasture production and composition, soil properties (organic carbon, available N (NO$_3^-$), pH$_w$ and microbial biomass (C and N)), and litter production. The impacts were measured over time of at recent (<5 years), medium (11-13 years) and old (>30 years)) age of cleared pastures in comparison to their uncleared (intact) woodland pastures of each tree community.

Our aim was to study the sustainability of cleared and uncleared pastures in terms of:

- pasture yield
- plant diversity, and litter production and N and P return
- soil health (soil organic carbon, soil NO$_3^-$, soil microbial biomass and pH)

The present research provides important information for the landholders and the policy decision makers to help them to take the correct decisions for the good of future pasture systems based upon the integrated effects of long term clearing on production and other ecological attributes of pasture systems. It is based upon a detailed study conducted on a grazing property in central Queensland region.
2. Materials and methods

Paired sites of cleared and uncleared woodlands for *E. populnea* (poplar box), *E. melanophloia* (silver-leaved ironbark) and *A. harpophylla* (brigalow) communities were selected across three age groups of clearing i.e. recent (5 yr), medium (11-13 yr) and old (33 yr) on a property “Avocet” (30 km. south of Emerald) in central Queensland, Australia.

The sites were selected with the guidance of research staff at Department of Natural Resources and Mines, and at Environmental Protection Agency, Emerald, to be the representative vegetation types of the region.

The study represents a 3 (types of tree communities) x 3 (time since clearing) x 2 (cleared v/s uncleared) factorial design. The paired cleared and uncleared sites were selected in close proximity with the assumption to have similar original biophysical characteristics (soil type, slope and vegetation) before clearing (according to information provided by the landholder), and to some extent to minimize variation in grazing management for the same cattle grazed the cleared and their paired uncleared sites. The methods of tree clearing applied to sites slightly differed, along with number of cattle grazing these sites (Table 1).

At each site, a representative area of one ha of the total area (minimal >20 ha) at each site was marked for data collection.

2.1 Above-ground pasture biomass and pasture composition

At the centre of the selected 1 ha area at each site, a fenced plot of 10 m x 10 m (exclosure – to exclude grazing) was marked to determine pasture above-ground biomass and
composition. The quadrat method (Kent and Coker, 1992) was used and a quadrat size of 1 m x 1 m, derived from the stable number of species per unit area based upon preliminary analysis, was chosen. Measurements were taken from five randomly assigned quadrats located at different positions across sampling dates for different seasons in a year; in March 2001, July 2001 and November 2001 and March 2002. All the plant samples from each quadrat were harvested just above-ground level, taken to the laboratory and dried at 60 °C for 48 hours to determine their biomass. Average quantity of pasture above-ground biomass for grazing was calculated over a year from the seasonal measurements. For repeated measurements i.e. March 2001 and March 2002, their average was considered along with the July 2001 and November 2001 seasonal measurements. All types of plants in a quadrat were identified to study the species composition.

The data were collected from both the fenced and unfenced sites however the results are presented herein for fenced plots only, since the trends were similar at both the fenced and unfenced sites (Sangha, 2003).

2.2 Litter production

Litter production was measured at unfenced sites (each of one ha) using the paired-plot technique (Wiegert and Evans, 1964). The measurements started in March 2001 and were taken at regular 4 monthly intervals until March 2002. On each occasion, three random quadrats of 1 m x 1 m were laid in three different directions and these quadrats were marked for the next set of readings in their adjacent (paired) quadrats. In each quadrat, the standing green herbage was removed and dead litter fallen on the ground was collected. The samples were screened to exclude large sticks of circumference >1 cm, air dried, and
weighed. For the next sampling date in July 2001, litter was collected from the quadrats adjacent to ones that were used in the previous season i.e. March 2001. Samples were processed in the same way as in March 2001. The same procedure was followed in November 2001 and March 2002. To measure the quantity of litter produced per season, amount of litter decomposed during that season was taken into account (Table 2), for example amount of litter produced at time t_0 was X_0 and at t_1 time was X_1, and R_1 was the rate of decomposition for t_0-t_1, so total litter produced during t_0-$t_1 = X_1-X_0+R_1$.

Decomposition of litter was studied using the litter bag technique over the same sampling dates as for litter production. This was necessary to account for the loss of litter that underwent decomposition between two successive sampling dates, to ensure accurate estimation of the total amount of litter produced over a particular season. The average amount of litter produced over a year was computed from litter produced during different seasons.

Litter samples collected in March 2001 (without decomposition) from each site were thoroughly mixed, ground, and analysed for N (using CHN analyser) and P (using ICP) (standard methods described by Carter, 1993; Peverill et al., 1999) at the soil laboratories of Incitec Ltd, Brisbane, Queensland.

2.3 Soil properties

Soil samples were taken (bulked for 8 cores per site) from unfenced sites (1 ha area) in January 2002 using hydraulic soil rig, for different depths (0-5, 5-10, 10-20, 20-30, 30-60 cm). Samples were processed to remove visible roots and pebbles, and analysed at the soil laboratories of Incitec Ltd (Brisbane) for soil organic carbon (SOC) (Walkey and Black
method using H_2SO_4 and $\text{K}_2\text{Cr}_2\text{O}_7$ in 1:100 dilution, measured colorimetrically), soil pH$_w$ (1 to 5, soil to water dilution using combination electrode), and soil NO$_3^-$ (1:5 soil to water, centrifuged nitrate measured colorimetrically in segmented flow analyser) (according to methods described in Carter, 1993; Peverill et al., 1999).

To determine the microbial biomass of C (SMB-C) and N (SMB-N), samples were taken from the top 0-5 cm soil in March 2002, immediately stored in cold container, and analysed using the chloroform fumigation extraction method (Vance et al., 1987) at the Natural Resource Sciences Laboratories (Department of Natural Resources, Mines and Energy, Indooroopilly, Brisbane, Queensland).

2.4 Statistical analysis

Individual effects of tree clearing on pasture biomass and litter production were analysed using Genstat ver 6.0 (2002). The residual maximum likelihood (REML) (Patterson and Thompson, 1971) method was used. The main effects for type of tree community and uncleared-cleared (recent, medium and old) treatments within each tree community were analysed. Models included the fixed effects of community, clearing treatments plus their interaction (community*cleared-uncleared), and the random effects of age since clearing and uncleared treatments within a community. If the interaction between community and cleared-uncleared treatments was not significant ($P<0.05$) then it was removed from the fixed model to test the main effects. The variance matrix derived from REML analysis was used to calculate approximate LSDs (least significant differences of means) at $P < 0.05$. The means from REML analysis were used in presenting the results.
For species diversity, Shannon Wiener’s index was calculated using species diversity and richness software (Henderson and Seaby, 1998; PISCES Conservation Ltd).

For soil properties, the same tool REML was used as for pasture biomass and litter data. The main effects (fixed terms) of tree community (E. populnea, E. melanophloia and A. harpophylla), cleared (recent, medium, old age of clearing) and uncleared treatments, and soil depth (each for 0-5, 5-10, 10-20, 20-30 and 30-60 cm depth) plus their interactions were analysed. The correlation within a treatment across different depths was analysed for all the main effects by applying the most suitable variance model AD2 (Antedependence order 2). There was a significant ($P <0.05$) three-way interactions (tree community*cleared-uncleared*depth) for main effects in all the soil variables. For each variable, LSDs (least significant differences of means) were used to compare cleared (recent, medium, old) and uncleared treatments for each specific depth in a particular tree type. The means from REML analysis were used to present the results.

To examine the integrated effect of studied attributes (pasture yield, species diversity, litter production, SOC, NO_3^-, pH_w and soil microbial biomass (C and N)) in cleared and uncleared pasture systems, data were analysed using multivariate analysis technique i.e. canonical variates analysis (CVA) in Genstat (ver. 6.0) across all tree communities. All the data were standardised for analysis.

The CVA was applied to determine the overall effect of clearing, as well as the attribute(s) that would have been strongly influenced by clearing and could lead to differentiate between cleared and uncleared treatments in all tree communities. There were not enough
replicates for cleared and uncleared treatments within a tree community to apply CVA to examine the effects in each tree community. However, the data were analysed for all the cleared and uncleared treatments irrespective of tree community. The CVA analysis finds linear combinations of the original variables that maximize the ratio of between-group to within-group variation where groups are cleared and uncleared treatments. Two canonical variates (CV1 and CV2) were considered to explain variation between treatments. The output from CVA presents an integrated impact of clearing in pasture systems.

3. Results

3.1 Pasture above-ground biomass

On average, pasture biomass was greater at cleared compared to uncleared sites, with maximum production at medium age of clearing for *E. populnea* and *A. harpophylla*, and at recent age of clearing for *E. melanophloia* (Table 3). However, the gains in pasture biomass were not consistent over time-since-clearing and showed a trend to decline at old compared to medium (in *E. populnea* and *A. harpophylla*) or recent age (in *E. melanophloia*) of clearing in all the tree communities. Interestingly, in *E. melanophloia*, the uncleared and old cleared sites did not differ significantly (*P*<0.05) in pasture yield.

Although the pasture yield was greater at cleared than uncleared sites, pasture plant diversity (Shannon Wiener’s index of diversity) was significantly greater at uncleared compared to all the cleared treatments in all tree communities (Table 3). Within cleared sites, species diversity declined at medium and old cleared sites compared to recent cleared sites.
3.2 Litter production

The total amount of litter produced over a year (kg ha\(^{-1}\)), important to account for the return of nutrients for pasture growth, was greater at uncleared compared to the cleared sites in all the tree communities except the medium cleared treatments (in \textit{E. populnea} and \textit{E. melanophloia}) (Table 4). The cleared treatments did not differ significantly (\(P<0.05\)) from each other in total amount of litter produced per year.

The potential amount of N stored in litter produced (yearly) was greater at uncleared compared to cleared sites in all tree types. P content was greater in litter produced at medium cleared site compared to uncleared site in \textit{E. populnea} and \textit{E. melanophloia}. In \textit{A. harpophylla}, litter produced at uncleared sites had significantly (\(P<0.05\)) greater P content than any of the cleared treatments (Table 4).

3.3 Soil properties (soil organic carbon (SOC), NO\(_3\)-, pH\(_w\), and soil microbial biomass (SMB-C and SMB-N))

Tree clearing had no significant effect on SOC except for recent or medium clearing had greater SOC in 0-10 cm and 30-60 cm depths than uncleared sites in \textit{E. populnea} and \textit{A. harpophylla} (Fig. 1). The paired t-test between cleared and uncleared treatments (irrespective of age group or tree type) for the average SOC in 0-60 cm depth also did not suggest any significant effect of clearing. Similarly, the differences between cleared and uncleared treatments were not evident for available N (NO\(_3\)-) which was highly variable in the top 0-10 cm depth (Fig. 2).

Clearing strongly influenced soil pH\(_w\) across all tree communities. Soil pH\(_w\) increased significantly (\(P<0.05\)) with clearing in the top 0-5 cm for \textit{E. populnea} and \textit{A. harpophylla}.
(Fig. 3). A significant increase in pH\textsubscript{w} \((P<0.05)\) due to clearing at 30-60 cm depth especially at medium and old clearing was evident in all three tree types. The increase in soil pH\textsubscript{w} across all depths was closely related to time since clearing across all tree types (at \(P<0.05\), \(Y\) (increase in soil pH) = \(a+(-1.29)e^{-0.041\text{time since clearing}}\); \(R^2=0.42\), where a varies from 7.0 -7.9 for different tree communities).

The SMB-C was significantly \((P<0.05)\) greater in uncleared soils (386±37 (standard error of means) mg kg\(^{-1}\)) than cleared soils (254±37 mg kg\(^{-1}\)) and similarly for SMB-N (greater at uncleared (40.17±3.29) than cleared (29.87±3.45)) sites, when analysed for all the cleared and uncleared sites irrespective of age of clearing or tree type.

3.4 Integrated effect of studied ecological attributes on the stability of a pasture system

The combined effect of clearing for various attributes on a pasture system was determined with CVA (Canonical Variates Analysis). Two canonical variates (CV1) and (CV2) were selected for recent, medium, old cleared and uncleared treatments across all tree communities. The first canonical variate (CV1) distinguished the oldest cleared treatment from medium and recent cleared, and uncleared treatments (CV1 explained 90 per cent of variation among these treatments) (Fig 4). The old age of clearing was different to other treatments mainly due to the combined effect of soil NO\textsubscript{3}, pasture biomass, litter production, species diversity and soil pH\textsubscript{w} (Table 5). Comparatively greater values of positive loadings for these attributes than the others suggested that recent and medium cleared, and uncleared treatments had better soils with greater pasture biomass and litter production than that the old cleared treatments. The greater value of negative loading for
pH\text{w} demonstrated that pH\text{w} was greater at the oldest clearing than at medium and recent cleared, and uncleared treatments (Table 5).

Only a further 7 % of the variation between cleared and uncleared pasture systems was explained by CV2. CV2 showed that the medium cleared treatment was different to the recent and old cleared, and uncleared treatments (Fig 4). The species diversity and SMB-C and SMB-N had a greater influence (positive loadings) on CV2 than did the other attributes (Table 5). However, the differential response across species between age of clearing for pasture yields obscured further meaningful interpretation of CV2.

4. Discussion

In the woodlands of east-central Queensland, the increase in pasture yield upon clearing has been demonstrated in earlier studies by Burrows, (1993), Burrows et al., (1999), and Scanlan and Burrows, (1990), and was also evident in the present study. The present research furthermore demonstrated that more of such benefits exist over the initial years of clearing not over a longer term (>30 years). From pasture production for cattle point of view, the cleared exotic pastures are more beneficial. But the question is how long will the increased pasture production benefits from clearing be maintained? The present study suggested a trend for decline in pasture yield over time-frame since clearing. The benefits of clearing for increase in pasture yield between cleared and uncleared treatments narrowed with age of clearing especially from 13 years to 33 years. The duration of benefit was in fact very short for E. melanophloia. Most importantly, the gains in pasture yield due to clearing are associated with some tradeoffs, for example, loss of some ecological attributes such as:
1. Decline in pasture plant diversity which may affect ecosystem stability.

2. Lesser return of nutrients through litter decomposition, which can imbalance the nutrient cycle in cleared pastures compared to woodland pastures.

3. Changes in soil properties that could, by implication, affect the growth of pasture species over a longer term.

4. **4.1. Impacts of clearing on plant diversity**

 There is a trade-off between production and species diversity since most of the cleared pastures are sown to one dominant exotic grass species that sets up mono-culture pastures. The diversity of native plant species, important in maintaining various ecosystem functions for the stability of a pasture system (Tilman *et al.*, 1997), is often compromised with high production gains from exotic grass species in cleared pastures.

 Reduced species diversity in cleared pasture systems could adversely affect the ecosystem function such as hydrology and soil stability. Tilman *et al.* (1997) conducted a detailed study on the diversity-productivity and diversity-sustainability in American grasslands, and reported higher functional diversity in high diversity plots supported higher productivity. The plots with higher number of species had greater functional diversity and were more efficient in allocation of soil nutrients compared to the less diverse plots. The reduced species diversity may affect the use of resources in cleared pastures as the diverse systems possess better potential for use of resources due to greater functional diversity (Tilman, 1997). Ash *et al.* (1997) reported that C sequestration in soils improved with grass species which were adapted to the edapho-climatic conditions (mostly native) of pasture systems.
in northern Queensland. Diversity of native plant species can help in maintaining the ecosystem functions of pasture systems in Queensland, but barely any report is available. A detailed study on species diversity and productivity in native pastures in this context may be very valuable.

4.2. Impacts of clearing on litter production and nutrient return

With clearing, the steady return of nutrients through litter (as in uncleared pastures) was disturbed because of the lesser production of ground litter at cleared sites compared to uncleared sites with a change in vegetation from woodlands to cleared pastures. This could lead to a change in the natural equilibrium of nutrient return to the system that could affect the pasture growth (Williams et al., 1993). The change in litter composition may lead to further changes in microbial communities and in return of nutrients to soil through litter decomposition (Kutsch and Dilly, 1999; Vetaas, 1992).

4.3. Impacts of clearing on soil properties

We acknowledge that there would have been more nutrients released in soil at the time of clearing that would have been taken up quickly by the plants sown to cleared land, but we could not notice the significant effect ($P<0.05$) of clearing on SOC and NO$_3^-$, most likely due to time factor, since even our recent cleared sites were 5 years old. If the recent clearing would have been 1 or 2 years old, it could be possible to notice increases in soil nutrients, as Lawrence et al., (1988) reported an increase in P content in A. harpophylla just after clearing.

A prominent effect of clearing was evident on soil pH$_w$ for increase with age of clearing that adversely affected the availability of soil nutrients (Sangha, 2003). The change in
microbial biomass is also an important indicator of any change in soil health for greater
SMB is responsible for mineralisation of organic matter and hence the return of nutrients
for pasture growth (Jenkinson and Ladd, 1981). Loss of soil stability in terms of soil pH\textsubscript{w}
and soil microbial biomass, thus, compromised pasture production gains.

The changes in soil pH\textsubscript{w} or soil microbial biomass occur mainly due to change in soil
processes which are the result of change in vegetation structure from woodlands to open
grasslands (Sangha, 2003; Vetaas, 1992; Bruce et al., 2000). The composition and eco-
physiological traits of plant species in an ecosystem affect the soil properties through
availability and quality of root exudates which are an important nutrient source for
microbes (Klein et al., 1988), and through alterations in nutrient competition (Bardgett et
al., 1999). Introduction of exotic grass species such as \textit{C. ciliaris}, and clearing of native
vegetation would have disturbed the plant-soil relationship in cleared pasture systems.

A change from a multi-species system in native woodlands to monocultures of \textit{C. ciliaris}
(predominantly, and with some other species; Sangha, 2003) results in a loss of species
diversity, litter composition, nutrient return to soil that affects the rate of mineralisation of
nutrients and their availability for pasture growth. Decline in microbial biomass at cleared
compared to uncleared sites may be the result of the integrated effect of litter composition,
decomposition of organic matter, change in soil properties, and in part may to due to
differences in soil micro-climate. The impact of clearing on overall ecosystem stability was
evident from the CVA (Fig 4) as the old pastures were situated differently than the
uncleared pastures. More importantly, over a long term, these effects (of nutrient return,
soil pH\textsubscript{w} or microbial biomass) will become more apparent as they intensify with time. If,
in order to maximize production gains some of these soil properties such as pH\textsubscript{w} (increased about 1-2 units at all old cleared sites) or soil microbial biomass (decreases) change, then, would the restoration of original capacity of land be possible over the same period of time for which the benefits (e.g. 13 to 30 years) were harvested? Quite possible, it may take longer than that. Thus, the opportunity cost for the lost ecosystem functions that were traded for short-term monetary gains, will increase with time. It is important to note that trees also provide other ecosystem services such as shade from sun and shelter in rain for cattle that contribute to improvement in their health conditions (Daly, 1984).

Despite the loss of plant diversity and soil health attributes with clearing, if we just account for the visible monetary benefits, they are not sustainable either. The monetary value of pasture biomass produced per year (assuming if all to be consumed) was also calculated according to the amount of beef produced from the amount of pasture consumed over a year per cattle (182.5 kg weight gain/yr from 3139 kg/yr dry matter uptake; Minson and McDonald, (1987), valued at the rate of AUD 1.50/kg of livestock weight). The yearly maximum monetary gains were obtained at medium age of clearing for \textit{E. populnea} (AUD 331 ha-1) and \textit{A. harpophylla} (AUD 371 ha-1), and at recent age of clearing (AUD 552 ha-1) for \textit{E. melanophloia} (Fig 4). However, the increased benefits were not sustained over time-since-clearing and declined at old clearing in all tree communities. Indeed, for \textit{E. melanophloia}, after 33 yrs of clearing, the monetary gains (AUD 246 ha-1 yr-1) were less than that at uncleared site (AUD 328 ha-1 yr-1) (Fig 5).

Clearing led to a notable change in the ecological state of pastures from the uncleared to 33 years cleared pasture systems. The old cleared pastures differed significantly from
uncleared pastures in terms of ecological attributes, thus, suggesting that trees in uncleared pastures are important for maintaining pasture systems in the long-term. Trees provide a stable environment due to their shade, litter, stable hydrological cycle, recycling of nutrients, and by providing substrate for various soil microbial activities that results in improved physical and chemical conditions of soil. Williams et al. (1993) suggested that clearing of trees influences and disturbs the equilibrium of soil processes (nutrient recycling and decomposition). Once a natural woodland system is disturbed, it becomes more difficult to restore. Although, we agree that the production gains are important but the time frame for those gains and the associated loss of ecosystem functions suggest that these gains could be easily offset.

5. Conclusions

Increase in pasture production upon clearing occurred at the cost of loss of plant species diversity (hence the functional diversity of various plant groups), and loss of litter production and nutrient return. Together with the loss of soil microbial biomass and increase in soil pH these could also notably affect other associated ecosystem functions such as nutrient mineralisation, and hence the soil processes that support plant growth. A compromise must be searched for and struck when clearing to maintain ecosystem functions for sustainable pasture systems.

6. Acknowledgements

We are thankful to the landholders Mrs. and Mr. Spooner for permission to carry out this research on their property and for their co-operation during the field work. Mr. Robert Lowery helped in soil sampling and processing. Funds were provided by Central
Queensland University, Queensland. The statistical advise by Mr. David Reid, Department of Primary Industries, Rockhampton, is gratefully acknowledged. Our sincere thanks to the editor and the two reviewers for their valuable feedback that helped improve this manuscript.
7. References

Table 1. Details of time of clearing (all sites were chain pulled) and annual average stocking rate (SR) at cleared and uncleared sites for *E. populnea*, *E. melanophloia* and *A. harpophylla* communities.

<table>
<thead>
<tr>
<th>Tree community</th>
<th>Cleared treatments</th>
<th>Uncleared (intact) treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time of clearing</td>
<td>SR (adult cattle/ha)</td>
</tr>
<tr>
<td>E. populnea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recent clearing</td>
<td>May 1996</td>
<td>1/5</td>
</tr>
<tr>
<td>Medium clearing</td>
<td>Dec 1987</td>
<td>1/3</td>
</tr>
<tr>
<td>Old clearing</td>
<td>July 1967</td>
<td>1/6</td>
</tr>
<tr>
<td>E. melanophloia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recent clearing</td>
<td>May 1996</td>
<td>1/5</td>
</tr>
<tr>
<td>Medium clearing</td>
<td>Oct 1990</td>
<td>1/3</td>
</tr>
<tr>
<td>Old clearing</td>
<td>July 1967</td>
<td>1/6</td>
</tr>
<tr>
<td>A. harpophylla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recent clearing</td>
<td>May 1996</td>
<td>1/5</td>
</tr>
<tr>
<td>Medium clearing</td>
<td>Dec 1987</td>
<td>1/3</td>
</tr>
<tr>
<td>Old clearing</td>
<td>July 1967</td>
<td>1/6</td>
</tr>
</tbody>
</table>

Table 2. Calculations for litter production during different seasons.

<table>
<thead>
<tr>
<th>Amount of litter collected</th>
<th>Seasonal decomposition</th>
<th>Amount of litter produced during different seasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 2001 = X₀</td>
<td>Apr 2001-Aug 2001 = R₁</td>
<td>Mar 2001-July01 = X₁-X₀+R₁</td>
</tr>
<tr>
<td>July 2001 = X₁</td>
<td>Aug 2001-Dec 2001 = R₂</td>
<td>July 2001-Nov01 = X₂-X₁+R₂</td>
</tr>
<tr>
<td>Mar 2002 = X₃</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3 Yearly average pasture biomass (kg ha\(^{-1}\)) and Shannon Wiener’s index of species diversity at uncleared, and at recent, medium and old age cleared treatments of *E. populnea*, *E. melanophloia* and *A. harpophylla* communities.

<table>
<thead>
<tr>
<th>Tree type</th>
<th>Pasture biomass*</th>
<th>Shannon Wiener’s index</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. populnea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncleared</td>
<td>1222(^{c})</td>
<td>2.5201(^{a})</td>
</tr>
<tr>
<td>Recent</td>
<td>1855(^{bc})</td>
<td>2.2478(^{b})</td>
</tr>
<tr>
<td>Medium</td>
<td>4019(^{a})</td>
<td>0.3217(^{d})</td>
</tr>
<tr>
<td>Old</td>
<td>2974(^{ab})</td>
<td>0.7941(^{c})</td>
</tr>
<tr>
<td>E. melanophloia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncleared</td>
<td>2879(^{ab})</td>
<td>2.3881(^{a})</td>
</tr>
<tr>
<td>Recent</td>
<td>4174(^{*})</td>
<td>1.6142(^{b})</td>
</tr>
<tr>
<td>Medium</td>
<td>2519(^{ab})</td>
<td>1.2675(^{c})</td>
</tr>
<tr>
<td>Old</td>
<td>2231(^{b})</td>
<td>1.1236(^{c})</td>
</tr>
<tr>
<td>A. harpophylla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncleared</td>
<td>1035(^{b})</td>
<td>2.4751(^{a})</td>
</tr>
<tr>
<td>Recent</td>
<td>2458(^{ab})</td>
<td>1.7729(^{b})</td>
</tr>
<tr>
<td>Medium</td>
<td>4700(^{a})</td>
<td>0.2068(^{d})</td>
</tr>
<tr>
<td>Old</td>
<td>3294(^{a})</td>
<td>0.6318(^{e})</td>
</tr>
</tbody>
</table>

*different superscripts in a column represent significant difference at \(P<0.05\) for cleared and uncleared treatments within a tree community.

Table 4. Litter production (kg ha\(^{-1}\) yr\(^{-1}\)) and potential content of N and P (kg ha\(^{-1}\)) stored in annual amount of litter produced at uncleared and cleared (recent, medium and old) sites for *E. populnea*, *E. melanophloia* and *A. harpophylla* communities.

<table>
<thead>
<tr>
<th>Site</th>
<th>Litter production</th>
<th>Uncleared</th>
<th>Recent</th>
<th>Medium</th>
<th>Old</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. populnea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>15.30(^{a})</td>
<td>8.04(^{b})</td>
<td>6.63(^{b})</td>
<td>4.49(^{b})</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.58(^{b})</td>
<td>0.60(^{b})</td>
<td>1.10(^{a})</td>
<td>0.50(^{b})</td>
<td></td>
</tr>
<tr>
<td>E. melanophloia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>11.40(^{a})</td>
<td>4.38(^{b})</td>
<td>6.56(^{b})</td>
<td>10.39(^{ab})</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.84(^{ab})</td>
<td>0.50(^{b})</td>
<td>0.95(^{a})</td>
<td>0.51(^{b})</td>
<td></td>
</tr>
<tr>
<td>A. harpophylla</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>29.97(^{a})</td>
<td>6.55(^{b})</td>
<td>5.49(^{b})</td>
<td>6.32(^{b})</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.87(^{a})</td>
<td>0.55(^{b})</td>
<td>0.63(^{b})</td>
<td>0.67(^{b})</td>
<td></td>
</tr>
</tbody>
</table>

*different superscripts in a row represent significant difference at \(P<0.05\) between any two treatments in each of the tree community.
Table 5. Loading values for various variables from the canonical variate analysis for recent, medium and old cleared, and uncleared treatments.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Loading values for CV1</th>
<th>Loading values for CV2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasture biomass</td>
<td>3.60</td>
<td>-0.47</td>
</tr>
<tr>
<td>Species diversity</td>
<td>2.54</td>
<td>0.86</td>
</tr>
<tr>
<td>Litter production</td>
<td>3.40</td>
<td>-0.39</td>
</tr>
<tr>
<td>Soil organic carbon</td>
<td>-1.80</td>
<td>-0.07</td>
</tr>
<tr>
<td>Soil pH<sub>w</sub></td>
<td>-3.24</td>
<td>0.09</td>
</tr>
<tr>
<td>Soil NO<sub>3</sub><sup>-</sup></td>
<td>3.82</td>
<td>-0.27</td>
</tr>
<tr>
<td>Soil microbial biomass-C</td>
<td>1.86</td>
<td>0.25</td>
</tr>
<tr>
<td>Soil microbial biomass-N</td>
<td>0.72</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Fig. 1. Soil organic carbon (SOC) at recent, medium and old cleared, and uncleared treatments for a) *E. populnea*, b) *E. melanophloia* and c) *A. harpophylla* communities.

The same letter at any one sampling depth denotes no significant difference at P<0.05 between any two cleared or uncleared treatments within a tree community.
Fig. 2. Soil available nitrogen (NO$_3^-$) at recent, medium and old cleared, and uncleared treatments for a) *E. populnea*, b) *E. melanophloia* and c) *A. harpophylla* communities.

The same letter at any one sampling depth denotes no significant difference at P<0.05 between any two cleared or uncleared treatments within a tree community.
Fig. 3. Soil pH$_w$ at recent, medium and old cleared, and uncleared treatments for a) *E. populnea*, b) *E. melanophloia* and c) *A. harpophylla* communities.

The same letter at any one sampling depth denotes no significant difference at P<0.05 between any two cleared or uncleared treatments within a tree community.
Fig 4. Relationship between first and second canonical variates for cleared (recent, medium and old) and uncleared treatments (with 95 per cent confidence regions around means).

Fig 5. The monetary value of pasture yield produced at uncleared, recent, medium and old cleared sites for *E. populnea*, *E. melanophloia* and *A. harpophylla* communities.