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Main text32

Streams play a key role in the global carbon cycle. The balance between carbon intake33

through photosynthesis and carbon release via respiration influences carbon emissions from34

streams and depends on temperature. However, the lack of a comprehensive analysis of35

the temperature sensitivity of the metabolic balance in inland waters across latitudes and36

local climate conditions hinders an accurate projection of carbon emissions in a warmer fu-37

ture. Here, we use a model of diel dissolved oxygen dynamics, combined with high-frequency38

measurements of dissolved oxygen, light, and temperature, to estimate the temperature sen-39

sitivities of gross primary production and ecosystem respiration in streams across six biomes,40

from the tropics to the arctic tundra. We find that the change in metabolic balance, that41

is, the ratio of gross primary production to ecosystem respiration, is a function of stream42

temperature and current metabolic balance. Applying this relationship to the global com-43

pilation of stream metabolism data, we find that a 1 ◦C increase in stream temperature44

leads to a convergence of metabolic balance, and to a 23.6% overall decline in net ecosys-45

tem productivity across the streams studied. We suggest that if the relationship holds for46

similarly-sized streams around the globe, the warming-induced shifts in metabolic balance47

will result in an increase of 0.0194 Pg carbon emitted from such streams every year.48

Streams play a significant role in the transport, storage, and transformation of organic49

carbon globally1,2. Recent estimates suggest that 0.8–1.8 petagrams (Pg) of carbon evade50

from streams and rivers to the atmosphere annually3,4. This is comparable in size to the51

net annual terrestrial–atmosphere and net ocean–atmosphere carbon exchange5. Stream52

metabolism, which is governed by gross primary production (GPP) and ecosystem respiration53

(ER), contributes substantially to the overall carbon flux out of streams. A recent study54

estimated that stream metabolism is responsible for up to 28% of the total carbon flux55

from streams to the atmosphere6, resulting in an estimated net flux of 0.12 Pg C per year7.56

As GPP and ER are both temperature dependent processes, sustained climate warming57

has the potential to profoundly alter the rates of carbon flux in and out of streams. Over58

the past century, mean water temperature in US rivers and streams increased at a rate of59

0.009–0.077 ◦C per year8, and stream temperatures are predicted to increase by 1–3 ◦C60

with the doubling of atmospheric CO2 concentration9. Consequently, understanding the61

feedback between stream metabolism and global warming is crucial when considering global62

or regional carbon cycles.63
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Although it is tempting to use well quantified temperature responses of photosynthesis64

and respiration at the cellular level to predict ecosystem–level responses to warming, complex65

interactions among organisms and their abiotic environments can confound the temperature66

responses of cellular processes at higher levels of organization. Taken at face value, the67

differential temperature sensitivities of photosynthesis and respiration at the cellular level68

defined by activation energy in the Arrhenius equations (≈ 30.9 and 62.7 KJ mol−1 for69

photosynthesis and respiration, respectively10) prescribe a relatively faster increase in ER70

than GPP in response to warming. Consequently, we would predict that streams will be-71

come more heterotrophic (i.e. lower GPP/ER) as climate continues to warm. However, the72

implicit assumption of such a prediction, that the activation energies of photosynthesis and73

respiration at the cellular level are appropriate for describing the temperature sensitivities74

of GPP and ER in streams at the ecosystem level, may not hold.75

Intrinsic variation in the temperature dependence of multiple processes that comprise76

aggregated ecosystem rates can cause the temperature sensitivities of whole ecosystem pro-77

cesses to deviate from the temperature dependence of cellular level responses. For exam-78

ple, variation in algal community composition can influence the temperature sensitivity of79

ecosystem–level GPP because the activation energy of photosynthesis varies across phyla of80

algae11,12. Similarly, the chemical structure of organic compounds influences the activation81

energy of decomposition reactions, and thus, variation in respiratory substrate composition82

can affect the temperature sensitivity of ER13. Alternatively, if ecosystem–level GPP and ER83

are influenced by other temperature dependent processes, inferred temperature sensitivities84

of GPP and ER may reflect the influences of these processes and not necessarily the tem-85

perature sensitivities of cellular photosynthesis and respiration. For example, warming may86

accelerate the flux of nutrients and organic carbon from sediments to the water column14
87

and transport of nutrients across cell membranes15, both of which could result in amplified88

temperature sensitivities at the ecosystem level16. Temperature sensitivities of GPP and89

ER may reflect the temperature sensitivity of a process that constrains GPP or ER, such as90

nitrogen supply19. Conversely, the temperature sensitivities of GPP or ER at the ecosystem91

level can be muted by nutrient limitation17,18. Finally, variation in the responses of different92

taxa to temperature variation can confound aggregate temperature sensitivity. Differential93

responses to warming across decomposer taxa have even been shown to cancel each other94

out, resulting in no net change in ecosystem carbon flux in response to warming20.95
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In addition to the inherent complexity in ecosystem–level temperature sensitivities of96

GPP and ER, the varied approaches employed to quantify them also have the potential to97

influence the inferred ecosystem–level temperature dependence of GPP and ER. Incubations98

of stream substrata at different temperatures21,22 or mesocosm warming experiments23 do99

not include the entire focal ecosystem and may not encompass the processes key for deter-100

mining the temperature sensitivities of GPP and ER at the ecosystem level. Comparisons101

among streams or within one stream over seasons19,24–28 yield ecosystem–level estimates of102

temperature sensitivities, but temperature independent differences among streams or seasons103

due to hydrology29, geomorphology22, nutrient availability30,31, and light availability26 can104

easily confound the responses of GPP and ER to temperature. These confounding factors105

render the estimated temperature dependence not purely a response to temperature, but106

an integrated response to the suite of temperature dependent and independent differences107

across streams or seasons.108

Given the complexity of ecosystem–level temperature sensitivities and the challenges as-109

sociated with quantifying them, it is not surprising that various patterns have been reported.110

Some studies have found consistent temperature sensitivities of ER at the ecosystem and the111

cellular levels21,23,27,28, but others have demonstrated considerable deviation of ecosystem–112

level activation energies of GPP23,27,32 and ER19,25 from the values of their cellular analogs.113

In studies that simultaneously examined the temperature dependence of GPP and ER in114

streams, a shift toward heterotrophy with warming has been observed in some instances23,27,115

but a recent synthesis based on geothermal streams concluded that warming increases GPP116

and ER to the same extent and results in no net change in metabolic balance32. To date,117

simultaneous quantification of the temperature dependence of GPP and ER have been con-118

strained to mesocosm incubations or geothermal streams. Thus, there is still uncertainty119

about whether streams will become more heterotrophic (decreasing GPP/ER and NEP) or120

more autotrophic (increasing GPP/ER and NEP) at the continental scale in response to121

continued warming. Simultaneously quantifying the ecosystem–level temperature sensitiv-122

ities of GPP and ER in streams across broad bio-climatic regions is key to resolving such123

uncertainty.124

Here, we estimate the temperature sensitivities of GPP and ER in streams from six dis-125

tinct biomes. We utilize the response of DO concentration to diel temperature variation126

and dynamic models of DO concentration to infer the temperature dependence of GPP and127
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ER for each stream over multiple days33. Compared to studies that analyze streams along128

spatial or seasonal temperature gradients, we avoid the implicit assumption that differences129

in stream metabolism along the temperature gradient are mainly attributed to temperature130

differences, and thus minimize the influence of factors that covary spatially or seasonally with131

temperature34. Moreover, this dynamic modeling approach allows us to estimate tempera-132

ture dependence of GPP and ER for each stream, and thus characterize stream to stream133

variation in the temperature sensitivity of whole stream metabolism. Combining dynamic134

models with high resolution time series of light, temperature, and DO in streams across135

six biomes allows us to quantify the temperature dependence of stream metabolism across136

latitude, and refine predictions of the feedback between stream metabolic balance and global137

warming.138

Estimating activation energies of GPP and ER139

We estimated the ecosystem–level activation energies of GPP and ER in streams across140

six biomes by modeling diel changes in DO concentration. The six distinct biomes that141

span a wide range of latitude (13◦S – 68 ◦N) include tropical forest (Luquillo Experimental142

Forest, Puerto Rico (LUQ)), tropical savanna (Litchfield National Park, North Territory,143

Australia (AUS)), tallgrass prairie (Konza Prairie, Kansas, USA (KNZ)), temperate rain-144

forest (Andrews Experimental Forest, Oregon, USA (AND)), boreal forest (Caribou-Poker145

Creeks Research Watershed, Alaska, USA (CPC)), and arctic tundra (Toolik Lake Field146

Station, Alaska, USA (ARC)). In each biome, we measured DO concentration, photosyn-147

thetically active radiation, and water temperature at a 5 or 10 minute interval for 1–2 weeks148

in multiple stream reaches throughout a watershed. We modeled the response of DO con-149

centration to diel temperature variation to estimate ecosystem–level activation energies of150

GPP and ER. Specifically, we modeled the dynamics of DO concentration as:151

d[O2]

dt
= GPP − ER +K([O2]sat − [O2]). (1)

Here, [O2]sat is the saturated DO concentration and can be calculated from temperature and152

barometric pressure35. GPP , ER, and K are instantaneous rates of primary production,153

respiration, and reaeration respectively. We modified previously published models of aquatic154

metabolism36–38 by using the Arrhenius equation to describe the temperature dependence of155

GPP and ER. Specifically, GPP, ER, and K were modeled as :156

GPP = Pmaxtanh(
αI

Pmax
)e

−Eap
R

( 1
T
− 1

T0
)
; (2)
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ER = RT0e
−Ear

R
( 1
T
− 1

T0
)
; (3)

157

K = K20 × 1.024T−20. (4)

Here, Pmax (mg O2 L−1 min−1) is the maximum primary production rate, α (mg O2 L−1
158

s m−2 µE−1 min−1) is the slope of the light response curve of primary production at low159

light intensity, RT0 (mg O2 L−1 min−1) is the respiration rate at reference temperature T0160

(Kelvin), which we set at the average daily water temperature across all days for each stream161

reach, K20 (min−1) is the reaeration coefficient at 20 ◦C, I (µE m−2 s−1) is photosynthetically162

active radiation, T (Kelvin) is water temperature, R (8.314 KJ mol−1 Kelvin−1) is the ideal163

gas constant, Eap (KJ mol−1) and Ear (KJ mol−1) are the activation energies of GPP and164

ER, respectively. We employed a Bayesian approach to estimate the parameters (Pmax, α,165

RT0 , K20, Eap, Ear) in the model39, and calculated daily GPP, ER, GPP/ER, and NEP using166

the estimated parameters and associated light and temperature profiles (see methods).167

The estimated ecosystem–level activation energies exhibited significant variability both168

within and across biomes (Fig. 1), and were not significantly correlated with GPP, ER,169

or NEP (Fig. S1–S3). The activation energies of GPP and ER varied substantially from170

the activation energies of photosynthesis and respiration at the cellular level. Specifically,171

activation energies ranged from 0.5 to 839.2 KJ mol−1 for GPP and from 0.4 to 837.2 KJ172

mol−1 for ER. The median activation energies of GPP and ER were 68.2 KJ mol−1 and 67.5173

KJ mol−1, respectively, which is consistent with a recent study quantifying the temperature174

sensitivity of GPP and ER in streams along a geothermal gradient32. However, this does175

not necessarily imply that warming will increase GPP and ER to the same extent. Due to176

the nonlinear nature of temperature dependence and substantial variability in the activation177

energies of GPP and ER, simply using the central tendency of the estimated activation178

energies will not accurately describe the thermal response of stream metabolism within and179

across biomes. The inherent variation in activation energies underscores the importance of180

quantifying the thermal response of stream metabolism using activation energies of GPP and181

ER for individual streams rather than using the mean or median activation energies across182

all streams.183

Activation energy of GPP/ER decreases with GPP/ER and temperature184

The simultaneous quantification of the activation energies of GPP and ER allowed us to185

evaluate thermal response of stream metabolic balance across biomes. A common measure186
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of metabolic balance in streams is the ratio of GPP to ER, which, for our formulation of the187

instantaneous rates of GPP and ER, is:188

GPP

ER
=
Pmaxtanh( αI

Pmax
)

RT0

e
−Eap−Ear

R
( 1
T
− 1

T0
)
. (5)

The formulation of GPP/ER has the form of an Arrhenius equation, and thus, Eap − Ear189

is the apparent activation energy of GPP/ER and determines how instantaneous metabolic190

balance changes with temperature. A positive Eap−Ear means that GPP/ER will increase as191

temperature increases and a negative Eap−Ear means GPP/ER will decrease as temperature192

increases.193

Despite significant variation in both Eap and Ear (Fig. 1) and a lack of correlation between194

Eap, Ear, and GPP, ER, and NEP (Fig. S1–S3), we observed that Eap − Ear decreases195

significantly with daily GPP/ER (Fig. 2(a); linear mixed effects model, F1,39.14 = 8.23,196

P = 0.0066) and daily mean water temperature (Fig. 2(b); linear mixed effects model,197

F1,44.28 = 8.4, P = 0.0058). The negative correlation between Eap − Ear, GPP/ER and198

stream temperature gives rise to a prediction for how metabolic balance will change in199

response to warming. Specifically, GPP/ER in streams with higher temperature and higher200

current GPP/ER is predicted to decrease in response to warming, whereas in streams with201

lower temperature and lower current GPP/ER it is expected to increase. The exact pattern202

of changes in stream metabolic balance globally will depend on the effect sizes of GPP/ER203

and temperature, as well as the spatial distribution of temperature and daily GPP/ER204

around the globe.205

We hypothesize that the negative relationship between Eap − Ear and GPP/ER may206

stem from competition and coexistence among autotrophs and heterotrophs in the benthic207

community. Because a higher activation energy means a greater relative increase in reaction208

rates in response to warming40, it allows organisms with high temperature sensitivity to209

grow more quickly as temperature increases. Thus, it is possible for organisms with lower210

metabolic rated and higher thermal responsiveness to compete and coexist with those having211

higher metabolic rated but lower thermal responsiveness in a fluctuating environment41,42.212

More generally, the tradeoff between rate and responsiveness to temperature can be viewed213

as an example of nonlinearity of competition as a coexisting mechanism43.214
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Warming induces asymmetric convergence in stream metabolic balance215

Since activation energy is proportional to the percentage change in reaction rate in an Ar-216

rhenius equation40, the fact that daily GPP/ER and temperature predict Eap−Ear indicates217

that they also predict the percentage change in GPP/ER (∆GPP/ER) as temperature in-218

creases. We performed a simulated warming experiment to calculate ∆GPP/ER under 1 ◦C219

warming, and established a relationship between ∆GPP/ER and predictors of Eap − Ear,220

namely daily GPP/ER and mean water temperature. Specifically, we added 1 ◦C to each221

recorded water temperature, which represents a realistic estimate of stream temperature222

in the next century8. Using the observed light trajectories, the elevated temperature tra-223

jectories, and parameters in the DO model (equation 1–4) estimated from field data, we224

calculated the daily GPP, ER and then the proportional change in GPP/ER (∆GPP/ER)225

under this warming scenario for each stream in our data set. We analyzed the effects226

of daily GPP/ER and mean water temperature on ∆GPP/ER in a linear mixed effects227

model. As expected, ∆GPP/ER decreased significantly with both daily GPP/ER (Fig 3(a),228

F1,39.29 = 12.50, P = 0.0011) and temperature (Fig 3(b), F1,42.41 = 7.60, P = 0.0086).229

Quantitatively, ∆GPP/ER can be predicted based on the fixed effects in the model as230

∆GPP/ER = 0.46 − 0.45 × GPP/ER − 0.019 × Temperature.231

To establish how warming is likely to affect the metabolic balance in streams globally,232

we assembled a stream metabolism data set of daily GPP, ER, and mean water temperature233

based on two previous synthesis studies32,44, and applied the linear model for ∆GPP/ER234

as a function of both GPP/ER and mean water temperature to the compiled data set. We235

selected data within the range of daily GPP/ER (0.016–0.978) and daily mean temperature236

(2.2–26.3 ◦C) found in our study, resulting in a total of 236 metabolism estimates (see sup-237

plementary materials). After quantifying the GPP/ER under a 1 ◦C increase in temperature238

for streams in the compiled data set, two patterns of warming–induced changes in stream239

metabolic balance emerged. First, the GPP/ER of streams converged under a 1 ◦C tem-240

perature increase, shown as a decrease in the inter-site variability of GPP/ER (Fig. 4(a)).241

Second, the convergence in metabolic balance is asymmetric. The magnitude of decrease in242

GPP/ER in streams with high temperatures and high daily GPP/ER was larger than the243

magnitude of increase in GPP/ER in streams with low temperatures and low daily GPP/ER.244

Such asymmetry suggests that warming will influence the metabolic balance of streams with245

high temperature and daily GPP/ER more substantially, which translates to such streams246
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becoming stronger carbon sources (i.e. lower GPP/ER).247

Implications for the global carbon cycle248

We quantified warming–induced changes in NEP, the difference between GPP and ER,249

based on the simulated warming experiment. We estimated that a 1 ◦C increase in tem-250

perature will increase GPP from 0.89 to 1.12 (g O2 m−2 day−1), and ER from 3.45 to 4.27251

(g O2 m−2 day−1) on average across the streams we studied. Scaling our findings to similarly252

sized streams globally with an estimated benthic area of 2.75 × 105 (km2)7,45, a photosyn-253

thetic quotient of 1.2 (molar ratio of O2 to C), and a respiratory quotient of 0.85 (molar ratio254

of C to O2)
46, we predict that streams will become 23.6% more heterotrophic, with NEP255

shifting from −0.0822 to −0.1016 (Pg C year−1) globally (Table 1,Fig. 4(c)), in response256

to a 1 ◦C increase in temperature. Although our prediction of shifting toward more net257

heterotrophy in response to warming is consistent with predictions based on metabolic the-258

ory10, it differs importantly in that it results from the asymmetric convergence of metabolic259

balance, not a universal shift towards heterotrophy for all streams (Fig. 4(d)).260

The predictions for how GPP/ER and NEP will change with warming do not come261

without caveats. The predicted changes in GPP/ER and NEP are based on temperature262

sensitivity of metabolism for the current state of stream ecosystems, and changes in streams263

and adjacent terrestrial ecosystems concurrent with warming may complicate this prediction.264

For example, warming is expected to change the quantity and quality of allochthonous carbon265

inputs by stimulating soil organic matter decomposition47 and altering riparian communi-266

ties48. Thermal adaptation of benthic communities49 and changes in hydrology or nutrient267

availability30,50 may further amplify or damp the predicted convergence of metabolic balance.268

Despite these caveats, our predictions are based on findings from streams that encompass a269

broad range of biotic and abiotic conditions, which provide a robust basis for assessing the270

effects of warming on stream metabolic balance across the globe. Incorporating the warming271

response of stream metabolic balance identified in this study into comprehensive analyses272

will improve our ability to quantify the feedback between carbon dynamics in streams and273

future climate changes.274
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Methods275

Study sites and data collection276

We conducted this study in six watersheds representing distinct biomes, including tropical277

forest (LUQ), tropical savanna (AUS), tallgrass prairie (KNZ), temperate rainforest (AND),278

boreal forest (CPC), and arctic tundra (ARC). Within each watershed, we selected 6–12279

streams across a range of stream sizes to capture the physical gradients within the watershed.280

A detailed description of the study sites can be found in previous work51. In each stream,281

we recorded DO concentration, water temperature, and barometric pressure using a YSI282

ProODO handheld optical DO meter (YSI Instruments, Yellow Springs, Ohio, USA), and283

photosynthetically active radiation using an Odyssey Irradiance logger (DataFlowSystems,284

Christchurch, New Zealand) at a single location in each stream. The DO meter was calibrated285

with water saturated air immediately before deployment. The readings from the irradiance286

logger were converted to photosynthetically active radiation based on comparison with a287

calibrated sensor. We recorded these data at an interval of 5 minutes (ARC) or 10 minutes288

(all other sites) for 1–14 days. We collected data during base flow periods (Feburary–March289

2013 and March 2014 for LUQ, July–August 2013 for AUS, May–June 2013 and April–June290

2014 for KNZ, July–August 2015 for AND, July–August 2013 and 2014 for CPC, July–291

August 2013 and 2014 for ARC). In total, we collected 709 daily DO trajectories from 69292

stream reaches across the six biomes.293

Estimating activation energies of GPP and ER294

We modeled the dynamics of DO concentration with equations 1–4 and employed a Bayesian295

approach for parameter estimation39,52–54. Specifically, for a given set of parameters, we used296

the Runge-Kutta 4th order method implemented in the R package deSolve55 with a step size297

of 2.5 minutes to numerically solve the differential equations describing DO dynamics (equa-298

tions 1–4) and obtained a trajectory of modeled DO concentration. Numerically solving the299

differential equations with high accuracy requires the interpolation of discrete measurements300

of light and temperature. To this end, we used linear interpolation to approximate continu-301

ous trajectories of light and temperature from discrete measurements. We assumed that the302

differences between modeled and measured DO were independent and identically distributed303

normal random errors. Based on this assumption of error distribution, we computed the304

likelihood for any given set of parameters. We used uniform priors for all parameters in305
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the model, setting the lower bound of the uniform priors at 0 and upper bound at values306

significantly larger than found in previous studies to ensure that the posterior inferences307

were not overly constrained by the prior distributions. In particular, we set the upper bound308

of the uniform prior for Eap and Ear at 1000 KJ mol−1, which is significantly higher than309

found in existing literature19,21–23,25,27,28. We used Markov Chain Monte Carlo to sample the310

posterior distributions of the parameters. Specifically, we implemented the adaptive random311

walk Metropolis-Hasting algorithm56 with the function metrop in R package mcmc57. We ran312

each Markov chain for half a million iterations and used a burn-in period of 300000 iterations313

to ensure stationarity. We performed visual inspection and Geweke diagnostic58 of the trace314

plots with R package coda59 for proper mixing and convergence of the Markov chains. All315

parameters in the model (i.e. Pmax, RT0 , α, Eap, Ear, K20) were simultaneously estimated.316

We used posterior means of the parameters for further statistical analyses.317

We made two special considerations when estimating parameters. First, low diel vari-318

ability in temperature in some streams prevented us from estimating Eap and Ear with319

confidence. Thus, we only used Eap and Ear estimates with 95% highest posterior density320

intervals narrower than 500 KJ mol−1 for further statistical analyses. This is to ensure that321

the estimated Eap and Ear are mainly determined by the data, not by the uniform priors.322

With this selection criteria, we obtained 292 estimated Eap and Ear from 48 reaches based323

on the 709 daily DO trajectories collected from 69 reaches. The choice of 500 KJ mol−1
324

as the threshold is arbitrary. Such an arbitrary choice influences the number of estimated325

Eap and Ear for further statistical analyses, but does not affect the findings of this study326

(Fig. S6). Second, when estimating parameters, we divided the data from the same stream327

into individual days, and estimated a unique set of parameters for each stream on each day,328

considering the potential for day to day variation of the parameters for the same stream.329

To obtain the posterior distributions of daily GPP and ER, we numerically integrated the330

instantaneous rates of GPP and ER over a day based on each iteration of parameters in the331

Markov Chain. We performed the same diagnostics of Markov chains to ensure stationarity,332

proper mixing, and convergence. We obtained the posterior distributions of GPP/ER by333

taking the ratio of the trace of daily GPP and ER. We reported the means of posterior334

distributions as point estimates for daily GPP, ER, and GPP/ER. The estimated Eap, Ear,335

daily GPP, ER, and basic site information are included in the supplementary materials.336
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Simulated warming experiment337

With parameter estimates in the DO model (equations 1–4) for the 292 days of metabolism,338

we performed a simulated warming experiment to assess the response of stream metabolic339

balance to temperature increase. We added 1 ◦C to each individual measurement of water340

temperature. This warming scenario represents a 1 ◦C increase in daily mean temperature341

without changing the daily temperature variability. Using the estimated parameters in the342

DO model, the observed light trajectories, and the elevated temperature trajectories, we343

calculated the daily GPP and ER under this warming scenario following the same procedure344

outlined above. We performed the same diagnostics of the trace plots of daily GPP and345

ER in the simulated warming experiment. In total, we successfully calculated 288 daily346

GPP and ER under the 1 ◦C warming scenario. The daily GPP and ER under the current347

temperature and the 1 ◦C warming scenario were used to calculate the proportional change348

in GPP/ER (∆GPP/ER) as:349

∆GPP/ER =
GPP/ERwarming −GPP/ERcurrent

GPP/ERcurrent

, (6)

where GPP/ERcurrent and GPP/ERwarming are daily GPP/ER currently and under the350

1 ◦C warming scenario respectively. The relationship between ∆GPP/ER, currently daily351

GPP/ER, and mean daily stream temperature was then applied to the global metabolism352

data set to calculate GPP/ER under 1 ◦C warming.353

We also used results from the simulated warming experiment to evaluate how warming354

influences NEP in streams globally. Since we measured metabolism for several days in each355

stream, we first calculated the average GPP and ER for each stream over time and then356

the average GPP and ER over all streams with a 1 ◦C increase in temperature. The broad357

range of biotic and abiotic conditions encompassed in the streams we studied provided a358

robust basis to extrapolate globally. Thus, we scaled up the average GPP and ER across the359

streams in our study to a global scale using an estimated benthic area of 2.75 × 105 km2 for360

similarly sized streams globally7,45. The estimated global stream area corresponded to 1–5th361

order streams, and is appropriate for the size range of streams we sampled in this study.362

Finally, we converted metabolism from units of oxygen to carbon using a photosynthetic363

quotient of 1.2 (molar ratio of O2 to C) and a respiratory quotient of 0.85 (molar ratio of C364

to O2)
46.365
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Statistical analyses366

We analyzed the pattern of Eap−Ear as a function of current daily GPP/ER and daily mean367

temperature with a linear mixed effects model. Since we estimated a unique set of activation368

energies for each stream on each day, estimates of multiple days from the same stream could369

be correlated. Therefore, we included random effects of each stream nested in biome in the370

model to account for the repeated measurements. We treated the same streams measured371

in different years as different streams when specifying the random effects. Specifically, we372

started with a full model and performed backwards model selection to build the most par-373

simonious model. The fixed effects of the full model included daily GPP/ER, daily mean374

water temperature, and their interaction. The random effects of the full model included a375

random intercept and random slopes of both daily GPP/ER and mean water temperature376

for stream nested in biome. We first fit the full model using maximum likelihood and selected377

the structure of random effects based on AIC. We found that eliminating the biome-specific378

random slopes and intercepts lead to a slight decrease in AIC (∆AIC = −0.86), but elimi-379

nating the stream-level random intercepts (∆AIC = 54.4), random slopes of daily GPP/ER380

(∆AIC = 22.7), or random slope of daily mean water temperature (∆AIC = 10.8) all re-381

sulted in substantial increases in AIC. Therefore, we ultimately specified the random effects382

with a random intercept and random slopes of GPP/ER and mean water temperature for383

each stream in our final model. We then refit the model with restricted maximum likelihood384

and used F-tests with Kenward-Roger approximation of degrees of freedom60 to select the385

fixed effects. We found no significant interaction between daily GPP/ER and mean water386

temperature (F1,25.71 = 0.24, P = 0.63). Thus, the most parsimonious model included daily387

GPP/ER and mean water temperature as fixed effects, and a random intercept and slopes of388

both daily GPP/ER and mean water temperature for each stream. We tested whether the389

fixed effects slopes of daily GPP/ER and mean water temperature were zero using F-test390

with Kenward-Roger approximation of degree of freedom to evaluate whether daily GPP/ER391

or mean water temperature had a significant effect on Eap − Ear.392

Given that the percentage change in reaction rate is proportional to the activation energy393

in the Arrhenius equation40, and that Eap−Ear is the activation energy of GPP/ER (equation394

5), it follows that predictors of Eap − Ear should also be predictors of ∆GPP/ER. There-395

fore, we analyzed the effects of daily GPP/ER and mean water temperature on ∆GPP/ER396

using the same modeling structure as the most parsimonious model for Eap − Ear without397
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performing the model selection. We fit all the linear mixed effects models using function398

lmer in R package lme461. F-test with Kenward-Roger approximation of degrees of freedom399

was implemented using R package pbkrtest62. All statistical analyses were performed in R400

3.4.163.401

Data availability402

The compiled metabolism data and estimates of activation energies, GPP, and ER from403

streams we sampled are available in the supplementary information files.404
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Tables579

GPP ER NEP

Current 0.0281 ± 0.0036 0.1103 ± 0.0151 −0.0822 ± 0.0127

1◦C warming 0.0351 ± 0.0046 0.1367 ± 0.0200 −0.1016 ± 0.0172

580
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Figure captions581

Table 1: Global estimates of stream GPP, ER, and NEP currently and under 1582

◦C increase in temperature. Data are shown as mean±standard error of mean. Unit is583

Pg C year−1.584

Figure 1: Ecosystem–level activation energies of GPP and ER in streams. Each585

point represents estimated Eap and Ear in a particular stream reach on one day. Histograms586

on the axes show the frequency distributions of Eap and Ear. Dashed lines are the medians587

of the frequency distributions.588

Figure 2: Relationship between Eap − Ear, (a) current GPP/ER and (b) mean589

daily temperature. Dashed lines are predictions based on fixed effects in the linear mixed590

effects model (Eap − Ear = 236.92 − 221.20 × GPP/ER − 11.86 × Temperature). In each591

panel, the prediction line is evaluated at the mean of the other covariate.592

Figure 3: Proportional change in GPP/ER under 1 ◦C warming as a function593

of (a) current daily GPP/ER and (b) mean water temperature. Dashed lines are594

predictions based on fixed effects in the linear mixed effects model (∆GPP/ER = 0.46 −595

0.45 × GPP/ER − 0.019 × Temperature). In each panel, the prediction line is evaluated at596

the mean of the other covariate.597

Figure 4: Predicted changes in GPP/ER and NEP under 1 ◦C warming. Frequency598

distribution of (a) GPP/ER and (c) NEP currently and with a 1 ◦C increase in temperature.599

Changes in (b) GPP/ER and (d) NEP with a 1 ◦C increase in temperature. The dashed600

line in (c) is the isocline defined by the fixed effects from the linear mixed effects model601

(0.46 − 0.45 × GPP/ER − 0.019 × Temperature = 0), where GPP/ER is insensitive to602

temperature changes.603
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Figure 1: Activation energies of GPP and ER in streams. Each point represents

estimated Eap and Ear in a particular stream reach on one day. Histograms on the axes show

the frequency distributions of Eap and Ear. Dashed lines are the median Eap and Ear.

0 200 400 600 800 1000

0
20
0

40
0

60
0

80
0

10
00

Ear

E
ap

ARC
CPC
AND
KNZ
AUS
LUQ

Ear (KJ mol−1)

E
ap

 (K
J 
m
ol
−1
)

1



Figure 2: Relationship between Eap − Ear, (a) current GPP/ER and (b) mean

daily temperature. Dashed lines are predictions based on fixed effects in the linear mixed

effects model (Eap−Ear = 236.92−221.20×GPP/ER−11.86×Temperature). The prediction

line is evaluated at the mean of the other covariate.
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Figure 3: Proportional change in GPP/ER under 1 ◦C warming as a function

of (a) current daily GPP/ER and (b) mean water temperature. Dashed lines are

predictions based on fixed effects in the linear mixed effects model (∆GPP/ER = 0.46 −

0.45 × GPP/ER − 0.019 × Temperature). The prediction line is evaluated at the mean of

the other covariate.
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Figure 4: Predicted changes in GPP/ER and NEP under 1 ◦C warming. Frequency

distribution of (a) GPP/ER and (c) NEP currently and with a 1 ◦C increase in temperature.

Changes in (b) GPP/ER and (d) NEP with a 1 ◦C increase in temperature. Dashed line

in (c) is the isocline defined by the fixed effects from the linear mixed effects model (0.46 −

0.45 × GPP/ER − 0.019 × Temperature = 0), where GPP/ER is insensitive to temperature

changes.
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