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Inverse Determination of the Influence of Fire on Vegetation
Carbon Turnover in the Pantropics
Jean-François Exbrayat1 , T. Luke Smallman1 , A. Anthony Bloom2 , Lindsay B. Hutley3 ,
and Mathew Williams1

1National Centre for Earth Observation and School of GeoSciences, University of Edinburgh, Edinburgh, UK, 2Jet Propulsion
Laboratory, California Institute of Technology, Pasadena, CA, USA, 3Research Institute for the Environment and Livelihoods,
Charles Darwin University, Darwin, Northern Territory, Australia

Abstract Fire is a major component of the terrestrial carbon cycle that has been implemented in most
current global terrestrial ecosystem models. Here we use terrestrial carbon cycle observations to
characterize the importance of fire regime gradients in the spatial distribution of ecosystem functional
properties such as carbon allocation, fluxes, and turnover times in the tropics. A Bayesian model-data fusion
approach is applied to an ecosystem carbon model to derive the posterior distribution of corresponding
parameters for the tropics from 2000 to 2015. We perform the model-data fusion procedure twice, that is,
with and without imposing fire. Gradient of differences in model parameters and ecosystem properties in
response to fire emerge between these experiments. For example, mean annual burned fraction correlates
with an increase in carbon use efficiency and reductions in carbon turnover times. Further, our analyses
reveal an increased allocation to more fire-resistant tissues in the most frequently burned regions. As fire
modules are increasingly implemented in global terrestrial ecosystem models, we recommend that model
development includes a representation of the impact of fire on ecosystem properties as they may lead to
large differences under climate change projections.

1. Introduction

Terrestrial ecosystems offset climate change by capturing and storing 25–30% of fossil-fuel emissions of car-
bon dioxide (Le Quéré et al., 2015), albeit with a large interannual variability that is driven by climate varia-
bility and fire disturbance (Reichstein et al., 2013; van der Werf et al., 2010). While terrestrial ecosystem
models (TEMs) initially represented the impact of climate conditions on ecosystem carbon cycling, recent
models have included the representation of fire (Hantson et al., 2016). These new features range from simpler
models that use observed fire masks to prescribe burning of steady state pools (e.g., van der Werf et al., 2010)
to fully prognostic process-based models that simulate ignition and spread as a function of soil moisture (a
surrogate for fuel curing), wind speed, and lightning occurrences (e.g., Lenihan et al., 1998; Thonicke et al.,
2010). As large fire-prone savanna regions are a major component of the global land carbon interannual
variability (Ahlström et al., 2015; Liu et al., 2015; Poulter et al., 2014), this range of complexity in the parame-
terization of fire-related ecosystem properties (e.g., combustibility, survival strategies) may introduce further
uncertainty and biases in estimates of the land carbon sink that remains to be quantified (Hantson et al., 2016;
Rabin et al., 2017; Whitley et al., 2017).

Ecosystem models often rely on a discrete categorization of the land surface into plant functional types
(PFTs). Each PFT is associated with a set of space- and time-invariant parameter values that regulate
the ecosystem’s biogeophysical and biogeochemical responses to environmental drivers. The spatial
distribution of each PFT is based on a priori biogeography (e.g., boreal, temperate, and tropical), leaf mor-
phology (e.g., broadleaf and needleleaf), deciduousness (deciduous or evergreen), photosynthetic path-
ways (C3 or C4 plants), and tree cover fraction, from grasslands to forests (Ustin & Gamon, 2010). The
model-specific distribution of PFTs is usually created from land cover maps such as the Moderate
Resolution Imaging Spectroradiometer (MODIS)-derived classification (Friedl et al., 2002) to which various
levels of aggregation may be applied to reflect specific adaptation to climatic conditions (e.g., Harper
et al., 2016). For example, models that participated in the fifth phase of the Coupled Model
Intercomparison Project (CMIP5; Taylor et al., 2012), presented by Arora et al. (2013), represented between
5 and 16 PFTs.
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The PFT approach assumes that model parameters are transferable globally within the same PFT (Kuppel
et al., 2014). This involves a risk of biases due to possible overfitting to available training data sets (Scheiter
et al., 2013) which may not be representative of all possible trait values among ecosystems included within
the same PFT (Scheiter et al., 2013; Verheijen et al., 2013). Indeed, TEM calibration is often performed against
eddy covariance tower data (e.g., Kuppel et al., 2014) but the spatial distribution of these data sets means that
models are better constrained in temperate regions of the Northern Hemisphere. Another issue is that most
eddy covariance towers are installed in fire-free regions or report on fire-free periods. Therefore, models cali-
brated against these data will not be able to represent the observed impact of fire on ecosystem functional
properties (Bond & Keeley, 2005; Pausas & Schwilk, 2012) and limitations on biomass accumulation (Murphy
et al., 2014). There is a risk of overfitting data when transferring model parameters from fire-free conditions to
regions of high fire frequency. Indeed, to our knowledge only few models (e.g., aDGVM: Scheiter et al., 2013;
LPX: Kelley et al., 2014) represent fire adaptation strategies identifiable in the field such as shifts in carbon
allocation among plant tissues (Gignoux et al., 1997) and carbon costs associated with resprouting
and recovery.

Introducing spatial variation in some parameters can improve the overall quality of large-scale simulations of
biomass and productivity, as was demonstrated by Castanho et al. (2013) in the Amazon basin. They used in
situ observations to derive relationships (i) between net primary productivity (NPP) allocation to leaves and
roots and soil sand content and (ii) between phosphorus content and maximum carboxylation capacity of
RuBisCO. As a result, their model was able to reproduce gradients in woody NPP and aboveground biomass
(AGB) more accurately than using homogeneous parameter values for the whole basin. Similar to this
previous study (Castanho et al., 2013), we expect that spatially distributed information on ecosystem proper-
ties response to fire regimes can improve the representation of the carbon cycle in global scale TEMs, but
corresponding large-scale data sets are not readily available. Indeed, unlike leaf properties (Ustin & Gamon,
2010), internal processes like allocation and transit times (Bloom et al., 2016; Carvalhais et al., 2014) cannot
be remotely sensed and need to be retrieved through model-data fusion.

In this study, we seek to overcome this limitation by merging Earth observations of the biosphere with a
process-based ecosystem model. The aim of this inverse approach is to identify spatial variation in ecosystem
functional properties that are linked to fire. We focus on tropical ecosystems which feature fire-prone regions
experiencing largely different disturbance regimes as represented by the spatial distribution of mean annual
burned fraction (MABF; Figure 1) calculated from the Global Fire Emissions Database version 4 (GFED4; Giglio
et al., 2013), the inverse of the fire return period (Li, 2002). We hypothesize that gradients in fire disturbance
have significant impacts on the spatial distribution of ecosystem properties related to productivity, plant allo-
cation and carbon turnover times (Bond & Keeley, 2005). This would point to the need to take the spatial dis-
tribution of fire regimes into account when introducing complex fire modules into TEMs.

We use the Carbon Data Model Framework (CARDAMOM; Bloom & Williams, 2015; Bloom et al., 2016) to char-
acterize the importance of ecosystem response to fire in simulations of pantropical carbon dynamics.
CARDAMOM is used to retrieve maps of model parameters corresponding to ecosystem functional properties
and land-atmosphere carbon fluxes across the pantropical region in agreement with time series of fire
(burned area), meteorology, and remote sensing observations of the biosphere. Erb et al. (2016) examined
the impact of land use on global biomass turnover, and we take a similar approach to perform a second
experiment that excludes the impact of fire on the biosphere. We thereby derive hypothetical maps of poten-
tial ecosystem properties and fluxes without fire. Comparing these two retrievals (with and without fire)
allows us to quantify the influence of fire on terrestrial C balance of the pantropical region. Finally, we
perform a synthetic climate change experiment to assess the impact of including or excluding fire on the
sensitivity of terrestrial ecosystems to warming and increasing atmospheric CO2.

2. Materials and Methods
2.1. CARDAMOM

CARDAMOM is a model-data fusion tool that constrains an ecosystem model with available observational
data sets. It consists of two main components described hereafter: a TEM coupled with a model-data
fusion procedure.
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2.1.1. DALEC Ecosystem Model
CARDAMOM uses the Data Assimilation Linked Ecosystem Carbon Model (DALEC; Bloom & Williams, 2015;
Williams et al., 2005), a model of the terrestrial carbon cycle (Figure 2). DALEC calculates Gross Primary
Production (GPP) with the Aggregated Canopy Model (ACM; Williams et al., 1997). Autotrophic respiration
(Ra) is a fixed fraction of GPP, and fixed fractions of the remaining NPP are allocated to four live biomass pools:
foliar, labile, wood, and fine roots. The labile pool (Clabile) represents a reserve of nonstructural carbon that
can supplement the allocation to the foliar pool (Cfoliar) corresponding to leaf expansion. Leaf growth is con-
trolled by a Growing Season Index (GSI), similar to the one introduced by Jolly et al. (2005).

In our model, GSI is the product of three piece-wise linear functions of average daily minimum temperature
(Tmin), photoperiod, and vapor pressure deficit. Each of these functions returns a value that ranges from 0
(limiting conditions) to 1 (optimal conditions), and their shape is controlled by two parameters that corre-
spond to critical values. The value of GSI is used to scale the release of Clabile into Cfoliar when environmental
conditions are good for leaf production. Conversely, the value (1-GSI) is used to scale leaf loss into the litter
pool (Clitter). First-order kinetics are used to simulate the turnover of fine root C (Croot) into Clitter and woody
carbon (Cwood) into soil organic matter carbon pool (Csom). Microbial decomposition produces heterotrophic
respiration (Rh) and the model provides the net ecosystem exchange (NEE) as the net biogenic flux of carbon
from the land to the atmosphere: (calculated as NEE = Ra + Rh � GPP).

Fire generates carbon emissions from combustion of live and dead C pools (red upward arrows in Figure 2)
but also accelerates the turnover of live carbon into dead pools (red lateral arrows in Figure 2). It is imposed to

a fraction of each pixel according to the satellite-based GFED4 burned area
product (Giglio et al., 2013). Fire-induced emissions and mortality fluxes
are calculated similarly to van der Werf et al. (2010) with fixed combustion
resilience and emissions factors of the different carbon pools (Bloom et al.,
2016). At each time step t emission factors kp are used to calculate C emis-
sions from each pool p due to fire such as

FEp;t ¼ Bt�kp�Cp;t (1)

where FEp,t is the total fire C emission at time step t, Bt is the GFED4-
derived fraction of pixel burned, and Cp,t is the C in pool p at time step t.
We use the same combustion factors as Bloom et al. (2016) for Clabile

(0.1), Cfoliar (0.9), Croot (0.1), Cwood (0.1), Clitter (0.5), and Csom (0.01) where
higher values of kp are used for more flammable C pools. A resilience factor
r = 0.5 is assigned to simulate mortality of live biomass and Clitter transfer
to Csom such as

FMp;t ¼ Bt� 1 � kp
� �� 1 � rð Þ�Cp;t (2)

where FMp,t is the fire-imposed mortality or litter transfer C flux from pool

Figure 1. Mean annual burned fraction (%) derived from the GFED4 monthly database over 2000–2015 (Giglio et al., 2013).
Data are represented for the study regions where equal amount of data were available to constrain CARDAMOM.

Figure 2. Schematic of the DALEC model. Green arrows represent biogenic
fluxes between carbon pools. The buildup of leaves from labile carbon
(Clabile) is controlled by a growing season index (GSI). Red arrows represent
fire emissions (FE) and fire mortality (FM) fluxes which are calculated fol-
lowing equations (1) and (2), respectively.
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p. Overall fire accelerates vegetation turnover and provides an additional input of dead organic matter in
Csom. Fire fluxes are used to update pool sizes at each time step and the net biome exchange of C (NBE) is
calculated by adding fire C emission fluxes to NEE.
2.1.2. Model-Data Fusion
The reduced complexity of the DALEC ecosystem model enables it to perform computationally intensive data
assimilation procedures to quantify the uncertainty in the six initial pool conditions and 20 process para-
meters (see Table 1) according to observations. CARDAMOM adopts the approach described in Bloom and
Williams (2015) and Bloom et al. (2016) that combines a Markov Chain Monte Carlo (MCMC) procedure with
ecological and dynamical constraints (EDCs). The EDCs represent a formulation of the ecological common
sense that help constrain interdependencies between ecosystem processes (Bloom & Williams, 2015). They
help reduce the uncertainty in model parameters by dismissing simulations that do not satisfy a range of con-
ditions applied to carbon turnover rates, allocation ratios, and trajectories of carbon pools. For this study, the
model-data fusion procedure is performed for the pantropics using 5,417 pixels at a 1° × 1° spatial resolution
corresponding to the extent of the aboveground biomass map from Avitabile et al. (2016). This data set
blends two previous pantropical biomass maps (Baccini et al., 2012; Saatchi et al., 2011) with additional in situ
data and high-resolution local maps. Avitabile et al. (2016) AGB map yields lower estimates of pantropical
AGB stocks and different spatial patterns. Most noticeably, it predicts more biomass in the Congo basin,
the Guyana shield, and Southeast Asia than either of Saatchi et al. (2011) or Baccini et al. (2012) maps.
Conversely, Avitabile et al. (2016) maps estimates lower biomass in African savannahs and Central America.

In each pixel, the MCMC relies on Bayesian inference to determine the probability distribution of a model
parameter set x given observations O such as

p xjOð Þ�p xð Þ�p Ojxð Þ (3)

where p(x) represents the prior probability of a parameter set xi calculated such as

p xð Þ ¼ pEDC xð Þ�e
�0:5 log fautoð Þ� log 0:5ð Þ

log 1:2ð Þ

� �2

�e
�0:5

log Ceffð Þ� log 17:5ð Þ
log 1:2ð Þ

� �2

(4)

with pEDC(x) representing the prior parameter probability according to 12 EDCs. These represent qualitative

Table 1
DALEC-GSI Model Parameter Description and Ranges Allowed in the MCMC

Parameter Name Range

fauto Autotrophic respiration fraction of GPP 0.3–0.7
flab Fraction of GPP allocated to labile C pool 0.01–0.5
ffol Fraction of GPP allocated to foliage 0.01–0.5
froot Fraction of GPP allocated to fine roots 0.01–0.5
�lab Labile C turnover rate 10�5 to 10�1 day�1

�fol Foliar C turnover rate 10�6 to 10�1 day�1

�roo Fine roots C turnover rate 10�4 to 10�2 day�1

�woo Wood C turnover rate 2.5 × 10�5 to 10�3 day�1

�lit Litter C turnover rate 10�4 to 10�2 day�1

�som Soil organic matter C turnover rate 10�7 to 10�3 day�1

�min Litter mineralization rate 10�5 to 10�2 day�1

� Temperature dependence exponent factor affecting
litter and soil organic C turnover times

0.018–0.08

ceff Canopy efficiency parameter 10–100
clma Leaf carbon mass per area 10–400 g C/m2

VPDmin Optimal VPD for leaf production 1–5,500 Pa
VPDmax Optimal VPD for leaf senescence 1–5,500 Pa
Tmnmin Limiting Tmn for phenology 225–330 K
Tmnmax Optimal Tmn for phenology 225–330 K
Photomin Limiting photoperiod for phenology 3,600–82,800 s/day
Photomax Optimal photoperiod for phenology 3,600–82,800 s/day

Note. MMC = Markov Chain Monte Carlo; GPP = Gross Primary Production; VPD = vapor pressure deficit.
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constraints to estimate realistic allocation parameters, relative turnover rates, and pool trajectories in agree-
ment with ecological knowledge. We use the same EDCs as in Bloom et al. (2016) modified from Bloom and
Williams (2015). According to equation (4), p(x) also includes a prior value of 0.5 for the autotrophic respira-
tion fraction fauto (i.e., a 0.5 ratio of NPP to GPP) and a prior value of 17.5 for the canopy efficiency Ceff, a repla-
cement of the nitrogen × nitrogen use efficiency product which scales GPP in ACM. These priors and their
uncertainty were derived by Bloom et al. (2016) and represent the range of fauto reported by DeLucia et al.
(2007) and yield global GPP values consistent with Beer et al. (2010).

The likelihood p(O|x) is computed according to the ability of the model to reproduce time series of MODIS leaf
area index (LAI) fluxes and assuming that total biomass (i.e., the sum of Cfoliar, Clitter, Croot, and Cwood) from
Avitabile et al. (2016) and Csom from the Harmonized World Soil Database version 1.21 (Food and
Agriculture Organization et al., 2012) are representative of the system’s initial pool sizes such as

p Ojxð Þ ¼ e
�0:5

log OTBCð Þ� log MTBC;0ð Þ
log 1:5ð Þ

� �2

�e
�0:5

log Osomð Þ� log Msom;0ð Þ
log 1:5ð Þ

� �2

�e
�0:5�N

t¼1

log OLAI;tð Þ� log MLAI;tð Þ
log 2ð Þ

� �2

(5)

where OTBC and MTBC,0 are the observed and modeled initial total biomass carbon, Osom and Msom,0 are the
observed and modeled initial soil organic matter carbon stocks and OLAI,t and MLAI,t are the observed and
modeled LAI at time step t. Both biomass, Csom and LAI data sets were regridded to the center of the nearest
neighbor 1° × 1° pixel, using an area-weighted interpolation for biomass carbon and LAI and the dominant
soil type for Csom as provided by Exbrayat et al. (2014). We used log-transformed values and uncertainty fac-
tors as per Bloom et al. (2016).

2.2. Characterizing the Influence of Fire on Ecosystem Properties

In order to estimate the impact of fire on ecosystem properties we set up two CARDAMOM experiments over
all regions covered in Avitabile et al. (2016) biomass map (Figure 1). The experiments are performed with a
monthly time step from January 2000 to December 2015 using the ERA-Interim reanalysis climate data
(Dee et al., 2011). The first experiment, hereafter referred to as FIRE, uses monthly burned area from GFED4
(Giglio et al., 2013) to impose fire on ecosystems, while we omit this driver in the second experiment (here-
after referred as NOFIRE). Apart from this difference in disturbance drivers, both experiments are identical. For
each 1° × 1° grid cell, we run three MCMC chains run until 10,000,000 parameter sets have been accepted.
Based on 500 parameter sets from the second half of each chain, we rerun the model 1,500 times and derive
corresponding time series of ecosystem carbon fluxes and pool changes with corresponding confidence
intervals. We repeat this procedure for the FIRE and NOFIRE experiments independently resulting in the
retrieval of two unique parameter ensembles for every location (i.e., one with fire and one without).

CARDAMOM performs the data assimilation procedure in each pixel without any prior information on a spe-
cific land cover or PFT, although such information may exist in the data constraints such as MODIS LAI.
Therefore, CARDAMOM creates smooth maps of process parameters which correspond to ecosystem func-
tional properties (e.g., allocation of GPP to plant tissues, turnover rates). The MCMC approach estimates pos-
terior distributions of parameter and state variables from which confidence intervals can be sampled. We
compare the FIRE and NOFIRE experiments against other data sets. We use GPP estimates from FLUXCOM
(Jung et al., 2017; Tramontana et al., 2016) that correspond to upscaled measurements from the FLUXNET
network of eddy covariance towers (Baldocchi, 2014; Baldocchi et al., 2001). We use the average of an ensem-
ble of six FLUXCOM GPP data sets, each based on a different machine-learning method, to compare with our
retrievals. While our estimates used GFED4’s burned area as a driver, we compare the magnitude of the cor-
responding C emissions with those reported in GFED4 database, which are based on an ecosystem model at
steady state (van der Werf et al., 2010). Finally, we investigate the impact of introducing fire drivers on the
median, that is, highest confidence, of our retrievals as well as its impact on the uncertainty represented
by the 90% confidence interval (CI90). We focus on land-atmosphere fluxes, allocation of GPP into vegetation
C pools, and turnover times calculated following Bloom et al. (2016) such as

TTp ¼ CP

Fin;p � �Cp
(6)

where TTp is the turnover time (in years) of C in the pth pool (Figure 2), Cj is the mean pool size, Fin,p is the
mean annual input into Cp due to productivity (in plant C pools Cfoliar, Clabile, Croot, and Cwood), turnover
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and fire-induced mortality (from plant pools to Clitter and Csom) and decomposition (Clitter to Csom) and �Cp is
the mean annual change of Cp.

3. Results
3.1. Carbon Balance

Both FIRE and NOFIRE experiments indicate that the pantropics were a net sink (negative NBE) of atmospheric
carbon during the study period (Table 2). However, the apparently similar values of NBE in the two experi-
ments is the result of differences in the gross fluxes that are imposed by the representation or omission of
fire processes in FIRE and NOFIRE experiments, respectively. Indeed, while the sign and magnitude of NBE
is similar in both experiments, NEE retrieved in the FIRE experiment indicate a stronger net carbon uptake
(NEE, NBE) from tropical ecosystems than the NOFIRE experiment.

We compare retrievals with independent gridded estimates of the terrestrial carbon balance. FLUXCOM GPP
estimates over the study region represent 86.6 Pg·C·year�1, which is about 5% lower than the median of our
retrievals (Table 2). We note a tendency for CARDAMOM to simulate higher GPP than FLUXCOM at low lati-
tudes, and the opposite at midlatitudes of the Southern Hemisphere (Figure S1 in the supporting informa-
tion). Nevertheless, FLUXCOM estimates lie within the 50% confidence interval reported in Table 2 and
there is a good agreement (r = 0.88; p � 0.001) in the spatial distribution of GPP in both the experiments com-
pared to the FLUXCOM estimates.

We also compare emissions from fire retrieved in the FIRE experiment with estimates from the GFED4 data-
base. We retrieve mean annual fire emissions of 1.18 Pg·C·year�1 which is 7% lower than the GFED4 estimate
of 1.27 Pg·C·year�1, although this number lies within the 50% confidence interval of the retrievals. There are
regional differences in the distribution of fire emissions between the FIRE experiment and GFED4 emissions.
Overall, CARDAMOM simulates lower emissions than GFED4 in regions located at the edge of tropical rainfor-
ests in South America, central Africa, and Southeast Asia (i.e., tropical savanna), while it simulates higher emis-
sions in semiarid regions of the Sahel, southern Africa, and Australia. There is a significant correlation in the
spatial distribution of the emissions reported by GFED4 emissions and those in the FIRE experiment
(r = 0.65; p � 0.001).

3.2. Impact of Fire on Ecosystem Properties

Clear differences in the spatial distribution of ecosystem properties emerge between the FIRE and NOFIRE
simulations. In most locations, annual GPP is higher in the FIRE simulations compared to the NOFIRE simula-
tions (Figure 3a). This difference is exacerbated in areas where MABF is large, leading to differences up to
0.1 kg C·m�2·year�1 (Figure 3a), or a 6% increase of GPP in the FIRE experiment compared to the NOFIRE
experiment where MABF is >10%. The increase in retrieved GPP in FIRE is accompanied by a decrease in
Reco (Figure 3b). The reduction of Reco in FIRE compared to NOFIRE follows a trend with MABF (Figure 3b),
and it decreases by about 5% in areas where MABF is >10%. We do not identify a change in the uncertainty
of the GPP and Reco retrievals as represented by the width of the CI90 (Figures 3c and 3d).

Table 2
The Terrestrial Carbon Budget of the Pantropics Retrieved in the FIRE and NOFIRE Experiments During 2000–2015

Fluxes FIRE: Median (25th/75th percentiles)a NOFIRE: Median (25th/75th percentiles)

GPP 91.5 (83.5/100.8) 91.3 (83.3/100.2)
Ra 47.4 (40.8/55.2) 47.5 (40.9/55.3)
NPP (GPP-Ra) 43.3 (36.8/50.7) 42.9 (36.4/50.1)
Rh 40.2 (33.1/48.5) 40.9 (33.7/49.1)
NEE (-NPP + Rh) �2.9 (�6.7/1.0) �1.9 (�5.5/1.9)
Fire emissionsb 1.2 (0.9/1.5) —
NBE (NEE + Fire) �1.7 (�5.4/2.2) �1.9 (�5.5/1.9)

Note. We present mean annual values and the uncertainty across the 50% confidence range assuming spatial correlation between uncertainties in all pixels. All
values are in Pg C year�1, rounded to the first decimal. Negative values of NEE and NBE denote a net C uptake from the atmosphere. GPP = Gross Primary
Production; NPP = net primary productivity; NEE = Net Ecosystem Exchange; NBE = Net Biome Exchange of C.
aWe assume spatial correlation between uncertainties in all pixels: The median, 25th and 75th percentiles represent the area-weighted aggregate of all pixels’
median, 25th, and 75th percentiles.
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Similar to GPP, imposing fire disturbances led FIRE retrievals to estimate stronger pantropical NPP than in
NOFIRE retrievals (Table 2). The distribution of the increase in NPP follows a pattern similar to the increase
in GPP. Compared to the NOFIRE simulations, places with the highest MABF exhibit the strongest increase
in median NPP (Figure 4a) in the FIRE simulation that is on average 10% where MABF is >10%. The higher
NPP in the FIRE experiment is due to higher GPP, lower Ra (Table 2) and an increase in carbon use efficiency
(CUE, NPP/GPP; Figures 4b and 4c). The increase in CUE in the FIRE simulation is stronger in regions where the
MABF is high (Figures 4b and 4c). CUE is on average 4% higher in the FIRE simulation than in the NOFIRE simu-
lation where MABF is >10%. Additional to the increase in CUE, imposing fire leads to changes in NPP alloca-
tion, with shift toward a smaller fraction of NPP allocated to photosynthetic C pools (i.e., foliar and labile
pools; Figure 4b) and, conversely, a bigger fraction of NPP allocated to structural C pools (i.e., wood and root
pools; Figure 4c). The magnitude of the changes in NPP allocation patterns is relative to MABF. In places
where it is >10%, FIRE retrievals allocate on average an 8% smaller fraction of NPP to photosynthetic C pools,
and a 22% greater fraction to structural C pools.

FIRE simulations estimate a biomass of 300.2 (232.0/391.2) Pg C in the study area, which is 2.5% lower than
the corresponding estimate of 307.4 (236.7/402.4) Pg C in NOFIRE simulations. While the difference is mar-
ginal at the pantropical scale, we note that there is a tendency for a reduction in vegetation biomass in
regions where fire regime is intense (Figures 5a and 5c), particularly in central Africa and Australia. This is
accompanied by a reduction in uncertainty that follows the same tendency (Figures 5b and 5d). On average,
in regions where MABF is >10% the median biomass retrieved in the FIRE experiment is 16% lower than that
in NOFIRE, while the corresponding uncertainty shrinks by 29%. This occurs despite using the same prior for
biomass derived from Avitabile et al. (2016) in both experiments (Figure S3). For the whole pantropics the
median NOFIRE retrievals of biomass are in better agreement (Figure S3b; rmse � 0.389 kg C/m2) with the
prior than the FIRE retrievals (Figure S3a; rmse � 0.477 kg C/m2). Furthermore, the difference between FIRE
retrievals and observations from Avitabile et al. (2016) grows for greater MABF (Figure S3a), while NOFIRE
retrievals are comparable to the prior from Avitabile et al. (2016) across the whole pantropics (Figure S3b).

The increase in NPP and reduction of biomass lead retrieved vegetation carbon transit times to be shorter in
the FIRE experiment compared to the NOFIRE experiment (Figure 6a) especially in regions where MABF is
large (Figure 6c). Over the whole pantropical region imposing fire leads to an area-weighted 7% acceleration
of vegetation carbon cycling corresponding to a shortening of area-weighted transit time from 8.5 to
7.9 years. It drives a 3% shortening of highest confidence average ecosystem carbon transit times shifting

Figure 3. Impact of introducing fire on retrieved mean annual fluxes of Gross Primary Production (GPP; a, c) and Reco (b, d).
The top row represents the absolute difference in the retrieved median values and the bottom row represents the relative
difference in the spread of the CI90.
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from 38.9 years in NOFIRE to 37.6 years in FIRE. However, the spatial distribution of these differences is
heterogeneous and matches regions where MABF is the highest, especially southern Africa and northern
Australia (Figure 6a). In places where MABF is >10%, the area-weighted median vegetation carbon turnover
time retrieved by CARDAMOM is 32% shorter in the FIRE simulations compared to the NOFIRE simulations.
This tendency toward a reduction of the vegetation carbon turnover times in frequently burned pixels is

Figure 4. Difference in (a) retrieved net primary productivity (NPP) and biomass, (b) retrieved CUE and allocation of NPP to
photosynthetic C and c retrieved CUE and allocation of NPP to structural C between the FIRE and NOFIRE experiments.
Error bars represent the 50% confidence interval of retrieved medians. CUE = carbon use efficiency.

Figure 5. Ratio of total biomass carbon between FIRE and NOFIRE experiments. Ratio of median values (a) and ratio of the
width of the 90% confidence interval CI90 (b) are presented. Panels (c) and (d) present the distribution of the
information in maps (a) and (b) as a function of the mean annual burned fraction in each pixel, respectively. Boxes represent
median and interquartiles while whiskers represent the 5th and 95th percentiles.
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mirrored by a reduction in the uncertainty of the retrievals (Figures 6b and 6d). Compared to the NOFIRE
experiment, the uncertainty in the FIRE retrievals of vegetation carbon turnover time, measured as the width
of the 90% confidence interval, is reduced by 7% over the whole pantropical regions. However, similarly to
the median retrievals, the main impact is seen in regions with a high frequency of fire, and a mean reduction
of the uncertainty by 48% in pixels where MABF > 10% (Figure 6d).

4. Discussion

We have retrieved the modern terrestrial carbon cycle in the pantropics using two alternative model versions
that include or omit fire processes imposed by observations of burned area (Giglio et al., 2013). We note that
both experiments yield similar results in pantropical GPP. Still, we note that pantropical GPP increases in the
FIRE experiment, which is mostly due to an increase in regions with larger MABF (Figure 3a) where growth
and recovery are stimulated even in places where LAI may have been largely reduced. Higher productivity
in retrievals that include fire may seem counterintuitive as it is a globally significant consumer, but these
results were not unexpected considering several aspects of the inverse model-data fusion approach we
adopted. For example, GPP is constrained through the assimilation of the same LAI time series in the ACM
model (Williams et al., 1997) and the use of the same prior value for the parameter Ceff (Table 1; Bloom et al.,
2016) in both experiments. Therefore, both retrievals yield similar values but productivity is higher in FIRE to
offset LAI losses due to fire. In both experiments the highest confidence estimates agree that the pantropical
regions have acted as a sink of atmospheric CO2 of 1.7 Pg C/year in the FIRE experiment and 1.9 Pg C/year in
the NOFIRE experiment. These comparable estimates are due to a stronger biogenic sink (i.e., more negative
NEE; Table 2) in the FIRE experiment that is partially offset by fire emissions. The similarity between NBE retrie-
vals obtained with and without prescription of fire can be attributed to the use of the same biomass and soil
carbon constraints with corresponding EDCs designed to limit the drift of carbon pools. Overall, similarities in
the simulated pantropical carbon balance were expected but the inverse model-data fusion approach high-
lights differences in inner dynamics imposed by the addition or omission of fire disturbances.

Compared to GFED4 the FIRE experiment yields systematically higher emissions in semiarid regions and con-
versely less in more humid regions. Differences in fire emissions between the FIRE experiment and the GFED4
estimates (Figure S2) may arise from differences in the way fire is imposed and carbon stocks and associated
combustion factors at the time fire occurs. The GFED4 (van der Werf et al., 2010) fire C loss approach distin-
guishes between herbaceous, forest and peat fires, and sub-grid scales, which effectively introduces spatially
explicit patterns in the GFED combustion factors. In contrast, DALEC combustion factors are assumed to be
constant throughout the tropics, while observational studies indicate they may vary spatially and temporally
(Russell-Smith et al., 2009). This current limitation in DALEC could lead to relatively higher fire C emissions in

Figure 6. Ratio of vegetation carbon turnover times between FIRE and NOFIRE experiments. Ratio of median values (a) and
ratio of the width of the 90% confidence interval CI90 (b) are presented. Panels (c) and (d) present the distribution
of the information in maps (a) and (b) as a function of the mean annual burned fraction in each pixel, respectively. Boxes
represent median and interquartiles, while whiskers represent the 5th and 95th percentiles.
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grid cells composed of both forest, savanna, and grassland ecosystems, but where fires predominantly occur
within the savanna and grassland regions (Giglio et al., 2013). Furthermore, van der Werf et al. (2010) limit the
soil C loss to 50 cm in biomass burning regions, while CARDAMOM soil pool depth is not resolved. It points to
a possible overestimation of emissions from DALEC as controlled fire experiments indicate that low-intensity
fires do not have significant impacts on soil processes in frequently burned savannas of South America (Pinto
et al., 2002), southern Africa (Zepp et al., 1996), and Australia (Livesley et al., 2011). Differences between
CARDAMOM and GFED, as well as the wide range of combustion factor estimates across tropical ecosystems
(Carvalho et al., 2001; van Leeuwen et al., 2014; Ward et al., 1996, among many others) highlight that further
efforts are needed to establish the sensitivity of our results to prescribed fire combustion factors. Following
this study, developments of DALEC will address this aspect by dynamically linking combustion factors to the
ecosystem water balance, assuming higher combustibility under dry conditions. Additional drivers like fire
radiative power (Freeborn et al., 2014) could also be used to constrain combustion completeness.

Another notable difference between GFED and CARDAMOM fire emissions is that the assimilated biomass
map values (Avitabile et al., 2016)—which exhibit the effects of past deforestation—constrain the initial car-
bon pools: in contrast, GFED4 estimates rely on a model brought to equilibrium by recycling modern climate
and fire burned area data (van der Werf et al., 2010). Therefore, our estimates have less fuel to burn in these
areas and that partially explains the systematically lower emissions simulated by CARDAMOM in the wet tro-
pics at the edge of the rainforests (Figure S2). We note that the uncertainty in CARDAMOM’s estimates may be
seen as a current limitation, but we are confident that the future availability of high-frequency remotely
sensed biomass data (e.g., Le Toan et al., 2011) will help improve its ability to estimate the state and dynamics
of the terrestrial carbon cycle as shown with site-scale experiments (Smallman et al., 2017).

The impact of fire on land-atmosphere carbon fluxes and transit times is reflected by changes in plant alloca-
tion patterns between NOFIRE and FIRE simulations. For more frequently burned ecosystems, there was an
increased allocation of NPP to structural C (i.e., Cwood and Croots; Figure 4c) at the expense of photosynthetic
C (i.e., Cfoliar and Clabile; Figure 4b). This model behavior is similar to the increased allocation of carbon to fire-
resistant bark after imposing fire in the experiment reported by Scheiter et al. (2013) and observations of
Lawes, Adie, et al. (2011) on fire resistance conferred by bark thickness. Comparing retrievals from the FIRE
and NOFIRE experiments, we note a strong influence of fire on ecosystem fluxes and functional properties.
At the pantropical scale, feedbacks between fire and biogenic processes in the FIRE experiment maintain a
carbon balance similar to the NOFIRE experiment. This is explained by the interplay between adjusted alloca-
tion and turnover rates that increase the capacity of plants to store C (NEE in Table 2) and high levels of
sequestration postfire recovery in the corresponding experiments. Regional differences between the FIRE
and NOFIRE experiment indicate a coupling of higher productivity, higher CUE, and allocation to resistant
plant parts with more intense fire regimes (Figure 4). We note a shortening in vegetation and ecosystem C
transit times when imposing fire, clearly linked to disturbance and resulting C losses followed by rapid
regrowth associated with the modeled increase in GPP in intensely burned regions (Figure 3).

The reduction of biomass (Figure 5) for higher MABF agrees with aDGVM model simulations of fire suppres-
sion over African savannas (Scheiter & Higgins, 2009) and fire management for northern Australia (Scheiter
et al., 2015) as well as worldwide observations from in situ fire exclusion experiments (Higgins et al., 2007;
Tilman et al., 2000). Furthermore, the larger decrease in biomass from the NOFIRE to the FIRE simulations is
in agreement with observations that indicated a negative correlation between fire frequency and biomass
in Australian tropical savannas, for example (Murphy et al., 2014; Russell-Smith et al., 2003; Williams et al.,
1999). There is also an increase in differences between prior biomass information and values retrieved in
the FIRE experiment as MABF increases (Figure S3). The lack of agreement between our retrievals and prior
biomass data indicates that relevance of pantropical biomass maps for model benchmarking in fire-prone
regions needs to be evaluated.

Clear shifts in CUE and plant carbon allocation in response to fire emerge between the FIRE and NOFIRE
experiments (Figure 4). CUE increases in fire-prone regions already capable of high GPP (Figure 3), which
results in higher NPP (Figure 4a) and thus providing more carbon available to drive resprouting and/or
coppicing and stand regeneration post fire (Beringer et al., 2007). Ecosystems with higher MABF invest less
in ‘easily burned tissues (i.e., leaves; Figure 4b) and more in fire-resistant tissues (i.e., woody C in our model;
Figure 4c). Such a resistance strategy is evident in woody vegetation in fire-prone ecosystems of Australian
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(Clarke et al., 2015; Lawes, Richards, et al., 2011) and African savannas (Gignoux et al., 1997; Nefabas &
Gambiza, 2007) and also emerges from individual-based modeling (Scheiter et al., 2013). Indeed, allocating
carbon to less flammable plant pools results in a reduction of fuel loads and an increase in survival chances
(Clarke et al., 2013). The capacity for CARDAMOM to retrieve parameter sets representing shifts in ecosystem
properties in response to changes in MABF leads to reduced uncertainty of retrieved ecosystem stocks and
turnover times (Figures 5 and 6) although few outliers exhibit the opposite behavior in regions of the
Sahel where MABF is between 20% and 50%. While we do not investigate this aspect further, we suspect that
it might come from the mix of natural and managed fires in this region. In every other places, fire strongly
constrains ecosystem carbon pathways and turnover processes during the assimilation procedure.

Our large-scale results are in agreement with field observations of the influence of fire on ecosystem func-
tional properties (Pausas & Schwilk, 2012). While our approach is currently focused on the tropics, we expect
similar relationships to emerge in temperate and boreal ecosystems. However, the lack of availability of a
wall-to-wall biomass maps in extratropical regions currently limits the applicability of our approach. A similar
investigation will be made possible by the upcoming launch of the Global Ecosystem Dynamics Investigation
(GEDI; Stavros et al., 2017), which should provide a global biomass map in 2020. The parameter and transit
time maps (Figures 3–6) indicate that fire spatially influences ecosystem functioning properties crossing
boundaries between PFT maps used in classical TEMs. While PFT maps are subject to criticism, we acknowl-
edge that they offer a trade-off between model precision and computational costs. Therefore, for next gen-
eration TEMs to rely on distributed trait maps, further studies are required on fire-climates interactions with
ecosystem parameters. For example, separating evergreen broadleaf ecosystems into two different tropical
and temperate PFTs and updating parameter values to match with observational data sets of traits values
(Kattge et al., 2011) have recently led to improvements in the JULES model (Clark et al., 2011; Harper et al.,
2016). An option to mirror this approach with respect to fire dynamics could be to further categorize PFTs
based on the distribution of fire regimes (Archibald et al., 2013; Whitley et al., 2017). For example,
Archibald et al. (2013) have identified five global syndromes of fires regimes, or pyromes, based on remotely
sensed information of their frequency, intensity, and size. They showed that the spatial distribution of pyr-
omes resulted from complex interactions between biome types, local climate, and human activities, all of
which may change in a warmer world.

5. Conclusions

We have used the CARDAMOM model-data fusion system to retrieve continuous parameter maps related to C
cycling for the DALEC ecosystem model at 1° spatial resolution for the whole pantropics. Our coarse resolu-
tion results reveal shifts in CUE, allocation, and biomass that are in agreement with field observations of the
impact of fire, or of its exclusion, on ecosystem properties. The model-data fusion procedure retrieved shorter
turnover times of carbon in vegetation and ecosystems when fire processes were represented. We attribute
this acceleration of the turnover to an increase in NPP, driven by higher CUE, and lower biomass stocks.
Additionally, there is a shift toward more allocation to fire-resistant plant tissues. We note that the magnitude
of differences imposed by fire gradually increases with MABF while the corresponding uncertainties shrink,
indicating that fire processes imposed a strong constraint on retrieved properties. Finally, the synthetic cli-
mate sensitivity test we perform indicates nontrivial differences in the sensitivity of ecosystems to future cli-
mate change when fire disturbances were included in the model-data fusion. As prognostic fire is a process
that is increasingly implemented in TEMs, our results highlight the need to better represent ecosystem
response to fire.
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