Designing Environmental Research for Impact

C.A. Campbell,¹ E.C. Lefroy,² S. Caddy-Retalic,³ N. Bax,⁴ S. Caddy-Retalic,³ N. Bax,⁴ P.J. Doherty,⁶ M.M. Douglas,¹ D. Johnson,⁷ H.P. Possingham,⁸ A. Specht,⁹ D. Tarte,¹⁰ J. West⁷

1. Research Institute for the Environment and Livelihoods, Charles Darwin University, Ellengowan Drive, Darwin 0909 Australia. *Corresponding author.
2. Centre for Environment, University of Tasmania, Private Bag 141, Hobart 7001 Australia
3. Australian Centre for Evolutionary Biology and Biodiversity, School of Earth and Environmental Science, University of Adelaide, North Terrace, SA 5005 Australia
4. CSIRO Oceans and Atmosphere Flagship, Castray Esplanade, Hobart 7001 Australia
5. Institute for Marine and Antarctic Science, University of Tasmania, Hobart 7001 Australia
6. Australian Institute of Marine Science, PMB 3, Townsville 4810 Australia
7. Department of the Environment, Australian Government, GPO Box 787, Canberra 2601 Australia
8. ARC Centre of Excellence for Environmental Decisions, University of Queensland, St Lucia 4067 Australia
9. Australian Centre for Ecological Analysis and Synthesis, Terrestrial Ecosystem Research Network, University of Queensland, St Lucia 4067 Australia

Abstract

Transdisciplinary research, involving close collaboration between researchers and the users of research, has been a feature of environmental problem solving for several decades, often spurred by the need to find negotiated outcomes to intractable problems. In 2005, the Australian Government allocated funding to its environment portfolio for public good research, which resulted in consecutive four-year programs (Commonwealth Environmental Research Facilities, National Environmental Research Program). In April 2014, representatives of the funders, researchers and research users associated with these programs met to reflect on eight years of experience with these collaborative research models.

This structured reflection concluded that successful multi-institutional transdisciplinary research is necessarily a joint enterprise between funding agencies, researchers and the end users of research. The design and governance of research programs needs to explicitly recognise shared accountabilities among the participants, while respecting the different
perspectives of each group. Experience shows that traditional incentive systems for
academic researchers, current trends in public sector management, and loose organization
of many end users, work against sustained transdisciplinary research on intractable
problems, which require continuity and adaptive learning by all three parties. The
likelihood of research influencing and improving environmental policy and management is
maximised when researchers, funders and research users have shared goals; there is
sufficient continuity of personnel to build trust and sustain dialogue throughout the
research process from issue scoping to application of findings; and there is sufficient
flexibility in the funding, structure and operation of transdisciplinary research initiatives to
enable the enterprise to assimilate and respond to new knowledge and situations.

Keywords transdisciplinary, multi-institutional, participatory, flexible, collaborative,
knowledge management, research strategy, knowledge brokering

1. Introduction

Human society faces a number of ‘grand challenges’, several of which arise from the
relationship between people and the environment. These include climate change
adaptation and mitigation, food security, energy and water security, habitat loss and
species extinctions, pollution, and the spread of weeds, pests and diseases.

These and other ‘wicked problems’ (Brown et al., 2010) are characterized by technical
complexity and often uncertainty, large scales in space and time, a mix of social, economic
and biophysical drivers, abundant but disparate and heterogeneous data, and contested
issues among diverse stakeholders. The nature of such contest is itself important: it may
be rooted in conflict over values and norms, and/or uncertainty in the data.

Notwithstanding complexity, uncertainty, risk and conflict, on such issues there is
nevertheless typically a need for governments, industries and communities to make a
choice, reflected in decisions and actions. Such choices are often negotiated, often messy
rather than clear-cut, and for most environmental issues the choice to do nothing (whether
made actively or by default) also has environmental consequences.

A key response to such environmental challenges is to invest in applied research, which the
Australian Bureau of Statistics (1998) defines as ‘work undertaken primarily to acquire
new knowledge with a specific application in view’. The nature of these challenges is such that they can rarely be comprehended satisfactorily within a single scientific discipline, or indeed by science alone. There is a significant literature on the conceptual challenges associated with multi-, inter- and trans-disciplinary research (Fry, 2001; Klein, 2008; Gibbons et al., 2008; Bammer, 2013), and on the imperative for new ways of organizing research – e.g. ‘Mode 2’ research and ‘Post-normal science’ (Funtowicz and Ravetz, 1993). Less has been published about the practice of working with end users to design and organize multi-institutional environmental research to tackle large scale, long-term environmental problems, based on analyses of current and past experience (Campbell and Schofield, 2007; Trees et al., 2005a, 2005b).

Australia has invested significantly over the last twenty years in organizing applied research collaborations at national scale, including the Cooperative Research Centres program (Allens, 2012), Rural Research and Development Corporations (Productivity Commission, 2011), Centres of Excellence funded by the Australian Research Council and the National Climate Change Adaptation Research Facility (NCCARF, 2014).

This paper briefly reviews what we mean by transdisciplinary research, then discusses the findings of a participative, ‘structured reflection’ involving researchers, funders and end users of successive national environmental research initiatives in Australia, adapting an analytical framework developed by Roux et al. (2010).

2. Transdisciplinary research

Roux et al. (2010) propose a “framework for participative reflection on the accomplishment of transdisciplinary research programs”. They distinguish between post-normal science (Funtowicz and Ravetz, 1993; Francis and Goodman, 2010), sustainability science (Clark and Dickson, 2003; Burns and Weaver, 2008), and interdisciplinary studies (Newell, 2001; Repko, 2008), while noting ‘considerable overlaps of purpose’ between these approaches and the key point that all purport to complement, rather than replace traditional disciplinary research. Transdisciplinary studies incorporate elements of all these approaches in applying insights and tools from different disciplines, explicitly embracing complexity and uncertainty, acknowledging multi-stakeholder perceptions and values, in addressing problems that are ‘user inspired and context driven’ (Roux et al., 2010). A key feature of transdisciplinary research thus defined is the engagement of non-scientist stakeholders — in particular the end users of research — in the research enterprise.
“A key characteristic of transdisciplinary research is that the domains of science, management, planning, policy and practice are interactively involved in issue framing, knowledge production and knowledge application.”

Accordingly, Roux et al. (2010) suggest that there are three key groups of stakeholders in transdisciplinary research: researchers, end users of research, and funders of research. While all three groups may have shared broad goals to acquire new knowledge with a specific application in view they are likely to have different perspectives on those goals and how to achieve them, and to define success in different ways. Roux et al. (2010) propose a framework that sets out different accountabilities for the three ‘functional domains’ of funders, researchers and end users, as in Table 1 below.

Table 1: A framework to guide co-reflection on progress in transdisciplinary research programs that incorporates the accountabilities of funders, researchers and end users (after Roux et al., 2010)

<table>
<thead>
<tr>
<th>Functional Domain</th>
<th>Accountability indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funders of research</td>
<td>Strategic planning and leadership</td>
</tr>
<tr>
<td></td>
<td>Continuity and scientific competency</td>
</tr>
<tr>
<td></td>
<td>Discourse between funders, providers and users to ensure effective program goals and model</td>
</tr>
<tr>
<td></td>
<td>Flexibility to adjust program model and goals to meet research provider and user needs</td>
</tr>
<tr>
<td></td>
<td>Adaptive learning</td>
</tr>
<tr>
<td>Providers of research</td>
<td>Professionalism</td>
</tr>
<tr>
<td></td>
<td>Knowledge sharing</td>
</tr>
<tr>
<td></td>
<td>Relevance to end-user needs</td>
</tr>
<tr>
<td></td>
<td>Capacity building</td>
</tr>
<tr>
<td></td>
<td>Research excellence</td>
</tr>
<tr>
<td>Users of research</td>
<td>Capacity for adoption</td>
</tr>
<tr>
<td></td>
<td>Adaptive decision-making and policy revision</td>
</tr>
<tr>
<td></td>
<td>Continuity of personnel</td>
</tr>
<tr>
<td></td>
<td>Co-location of personnel</td>
</tr>
<tr>
<td></td>
<td>Capacity to build upon emerging research</td>
</tr>
</tbody>
</table>

More detail explaining each of these accountabilities is set out in Roux et al. (2010) who caution that these are not proposed as definitive or comprehensive, but to serve as a departure point from which this framework could be modified in the context of a specific research initiative.

3. Australia’s National Environmental Research programs

The Roux et al. (2010) framework was seen to be ideally suited for use as an analytical lens to distil lessons for the design and management of collaborative, multi-institutional
applied environmental research from the experience of national environmental research programs sponsored by the Australian government.

The key process in the application of the Roux et al. (2010) framework was a ‘structured reflection’ workshop such as the one involving the authors of this paper in April 2014. The workshop participants between them had well over one hundred person years of experience in leading and/or funding multi-institutional, transdisciplinary research programs, with total investment exceeding $500m. The workshop was further informed by an on-line survey of 500 participants with experience in the programs. Each respondent was asked to self-identify as a researcher, research funder or end-user/stakeholder. A response rate of around 9% was obtained, of whom 57% claimed to be researchers, 11% research funders, and 32% were end-users and/or stakeholders. Several respondents identified with more than one role.

The two research programs analysed in depth at the workshop were the Commonwealth Environmental Research Facilities (CERF) program, which was initiated by the Australian Government environment ministry in 2006, and subsequently evolved into the National Environmental Research Program (NERP) from 2010. The $160m CERF program was evaluated by Urbis (2010). The $154m NERP program is described by DEWHA (2010) and was evaluated by Spencer et al. (2014). Both programs were designed to meet the perceived knowledge needs of the environment portfolio, and to tackle issues that were not being adequately addressed by research investments through other government programs.

The CERF program commenced with a national call for research proposals against a program prospectus. Well over one hundred proposals were evaluated on merit by an independent, expert reference group that recommended a suite of investments to the Minister for the Environment, including individual research projects, ‘hubs’ (clusters of research projects focused on particular problems/themes/ecosystems) and fellowships. The NERP program drew on the experience and the evaluation of the CERF program (Urbis, 2010) in having a competitive national Expression of Interest process against broad research priorities, but then focusing its investment primarily around five research hubs, all of which evolved out of successful antecedents in the CERF program (Appendix A).

As at March 2014, almost 560 researchers from 53 organisations and many more end users had participated in NERP projects, many of whom were also involved in the preceding CERF program. Unfortunately, there was not a seamless transition from CERF to NERP,
but rather a significant hiatus in funding during which some researchers who had been
funded through CERF moved on to other roles. In the transition from CERF to NERP, the
federal environment department sharpened its focus to concentrate on biodiversity
conservation and management, and framed itself more explicitly as the key client and end-
user of the outputs of the program. The NERP program was thus expected to inform
policy development and program implementation within the federal environment
department first and foremost. However, the program was supported by an equivalent
level of co-investment from other research users and partners, including other departments,
governments (at state and local levels), industries and communities, who also expected
useful outputs from the research relevant to their interests.

The ability of the five NERP hubs (Appendix 1) to respond to the needs and interests of
their research users meant that they evolved subtly different structures and modus
operandi. Three had a strong and extensive geographic focus: the Tropical Ecosystems hub
focused on the Great Barrier Reef, its rainforest hinterland and the Torres Strait; the
Marine Biodiversity Hub focused on Australia’s marine territory; and the Northern
Australian Biodiversity hub focused on Northern Australian aquatic and terrestrial systems.
These foci largely determined their research users and stakeholder groups, and resulted in a
combination of bottom up self-organisation around specific research issues and top down
coordination to resource and deliver large, complex research programs. The Environmental
Decisions hub worked in partnership with a wide range of research users in the public and
private sectors across the country, identifying discrete research topics through focused
workshops after which small teams worked with end users on projects of varying duration
from several months to several years. The Landscapes and Policy hub identified several
regions as case studies, with biophysical and social researchers working in interdependent
teams on questions defined by the management agencies in each region.

Aligned with a general trend over the past twenty years for increased participation across
all sectors in environmental management (Holley, 2010), the environment department
outlined five key design parameters for strengthening links between researchers and policy
makers (Box 1).

Box 1: Design parameters for the NERP program to improve linkages between research and policy
(excerpt from DIISRTE, 2012)

NERP builds on the Commonwealth’s experience in implementing and evaluating the previous
Commonwealth Environment Research Facilities program, and includes increased focus on
mechanisms to ensure improved delivery to the end-users of funded research, particularly in
government for evidence-based policy.
In support of this objective, the program reflects best practice principles for strengthening the links and alignment between research and the needs of policy makers:

- **involving policy makers in the framing of research questions**: NERP program guidelines and research priorities are based upon consultation across the department, with a selection panel involving both researchers and departmental representatives then working through a two-stage process to allow for the further refinement of proposals.

- **specific focus on knowledge brokering and translation**: program guidelines require that 10 per cent of the funding for each hub must be devoted to communication and knowledge brokering activities – the program also acknowledges that effective translation requires integration – across research disciplines and of new and existing knowledge.

- **facilitating access to research**: in addition to other communication efforts, all NERP-funded research outputs must be made freely and publicly available to allow their use by a broader range of decision-makers.

- **enhancing mutual understanding**: the program also supports enhanced two-way engagement through mechanisms such as the identification of departmental end-users and contact officers for each hub, short-term secondments for researchers into the department and the ‘pairing’ of researchers and policy staff.

- **innovation in evaluation**: the NERP monitoring and evaluation strategy requires regular reporting on the usefulness of research in policy, with a mix of quantitative and qualitative measures employed.

Common challenges of linking research and policy remain, such as differing timelines and time pressures, and particularly the reward structures within which research and policy staff work, which often do not explicitly value the types of activity outlined above.

The five current NERP hubs now constitute a considerable body of experience and expertise in multi-institutional, transdisciplinary research collaborations focused on contemporary challenges in environmental science, policy and management. All NERP hub directors, plus senior representatives of funders and end users, participated in the ACEAS workshop.

Lessons emerging from each of the hubs and the insights of their directors are elaborated further below. While the NERP hubs were all selected against the same national prospectus and funded by the same government agency against the same overall objectives, guidelines and accountability measures, it is notable that each developed in quite different ways. All now have distinct and markedly different identities and *modus operandi*, yet the recent evaluation found each to be effective against both hub and program level objectives. This suggests that there is no single ‘magic bullet’ formula for designing a successful collaborative applied environmental research program. Rather, program design, management structure and research practice should respond to the specific ecosystem/issue, mix of stakeholders and end users and the nature of their knowledge needs, cognizant of the history of research investment in that context.

Acknowledging the importance of context in shaping local responses, we nevertheless contend that principles of good applied environmental research practice emerge across all hubs. The following section attempts to elucidate these using the framework proposed by
Roux et al. (2010), focusing on the five NERP hubs that originated in the CERF program, summarised in Appendix A.

4. The relative accountabilities of Researchers, Funders and End Users in transdisciplinary research programs

In using the Roux et al. (2010) accountabilities as a lens through which to reflect on the experiences and achievements of the five hubs, we involved a mix of researchers, funders and end users, both in the survey and the workshop. As suggested by Roux et al., we also monitored the utility of the framework during this reflection, and identified potential improvements.

Roux et al. (2010) cluster the accountabilities according to the functional domain (funders, researchers, end users) primarily responsible for their realisation. This implies that there could be shared accountabilities across domains, but this is not the impression conveyed (Table 1). We contend that multi-institutional, transdisciplinary research is a shared enterprise across funders, researchers and end users. All three domains have important roles to play, and most of these are shared responsibilities. The ultimate performance measure for such research is the generation of useful and relevant new knowledge that is applied by end users, resulting in a net environmental benefit that exceeds the cost of the research. It is very difficult for this to be realised, and it is not genuinely transdisciplinary research if any of the three domains is disengaged or discharges their responsibilities poorly.

Reflecting the conceptual framework of a shared enterprise, at the workshop we assigned a simple 3, 2 or 1 score to the degree of responsibility a given domain has for a given accountability (with 3 being most important), and we also modified the Roux et al. (2010) accountabilities slightly to better fit the NERP context, splitting some, combining others and deleting ‘co-location’. The consensus view of the researchers, funders and end users involved in the April 2014 workshop produced a modified version of the Roux et al. (2010) framework.
These weighted accountabilities are illustrated in Figure 1, enabling a visual comparison across the three domains.

Figure 1: Weighted accountabilities of (a) Funders, (b) Researchers and (c) End users in transdisciplinary research programs

The accountabilities seen as important for all three groups were leadership, engagement and discourse. All participants in collaborative transdisciplinary research need to demonstrate leadership and to remain engaged and actively communicating throughout the
research process. Successful leadership and engagement require that each domain is able
to understand and explain its own needs and potentials in ways that can be related to the
needs and/or potentials of other domains.

The leaders of NERP-funded research hubs felt that it is important that funding agencies
maintain sufficient continuity in staffing to be intelligent purchasers, able to ‘take the long
view’ and undertake high quality strategic planning and adaptive management at a research
program level — responding to changing circumstances and priorities as necessary, but no
more than necessary. Research funders need competent project management systems,
extending to management of data, information and the knowledge ‘legacy’ from
concluding research programs. They need sufficient scientific capacity to be able to
evaluate research proposals and to compare the track records of competing research
providers, but not to the extent of second-guessing researchers once programs and projects
are contracted.

Researchers’ accountabilities emphasise scientific competence, relevance, willingness to
engage in two-way knowledge sharing and to respond to the needs of end users, competent
project management and underpinning the quality of their research through publishing in
strong journals, in addition to communication designed to be meaningful for end users.

The accountabilities for research end users underscore their willingness to engage in the
research process to the extent necessary to maximize the chances of research outputs being
fit for purpose, meeting research user knowledge needs and able to be implemented in their
real world in industry, government or the community. This requires end users to have
sufficient organizational research capacity and scientific competence to be able to engage
effectively with researchers in problem definition and/or co-design of the research, which
in turn requires continuity in personnel engaged in the research process.

The ultimate performance measure for such research investments is the extent to which
program outputs are adopted, and the resulting environmental benefit. The capacity to
interrogate, adapt and utilise research outputs, and their ability to engage in adaptive
learning and decision-making as new knowledge emerges, are crucial accountabilities for
end users.
5. Discussion

The experience of the NERP hubs confirms that in successful transdisciplinary research programs, research end users are not passive recipients of knowledge products arising from a linear process conceived by researchers and/or funders and implemented by researchers. Rather, it is essential that they work collaboratively with funders and researchers to define the problem and scope knowledge needs, work out approaches to tackle that problem, and then interact with researchers during the active inquiry phase of the program so that researchers develop as deep an understanding as possible of the end users’ context, why their research is important, and how their results will be used. Some problems will require more effort from the end user in defining questions, than from researchers in responding to them.

The shared experiences spanning the implementation of both the CERF and NERP models suggests that all participants’ understanding of knowledge gaps evolves as collaborative applied research programs unfold, which is why accountabilities such as engagement and discourse are important and continuity is critical for all three groups.

A design feature of the CERF program that was seen as very successful and consequently built into the NERP program (Box 1), was the requirement that each hub invest at least ten percent of its budget in knowledge brokering and communications activities. Knowledge brokers are professional intermediaries (people or organisations) who facilitate knowledge exchange and sharing between researchers and practitioners. Knowledge brokering emerged in the public health sector (CHSRF, 2003) and is now applied in diverse ways in multiple sectors (Bielak et al., 2008; Michaels, 2009). Some NERP hubs have knowledge brokers embedded with end users, others with researchers, but all have explicit and significant investments in people and processes designed to ensure that end users are engaged in the research, and that research outputs are tailored to meet the needs of end users. While transaction costs may be high, the CERF and NERP experience is that direct, face-to-face interaction between researchers and end users is the most effective.

Knowledge brokering is situated along a spectrum of knowledge processes from conventional, linear dissemination of information (science communication) on the left hand side, through intermediary and brokering strategies in the middle, to co-production of knowledge, social learning and more systemic innovation (Figure 2). A characteristic of knowledge brokering is that knowledge is provided at the time and in the form required by
the end user rather than those most convenient to the researcher.

In some contexts, these knowledge intermediary processes may begin where the research stops, to improve uptake of research results and amplify research impact. In other contexts however — for example the complex, multi-dimensional and multi-stakeholder problems being addressed by the CERF and NERP hubs — brokering processes between the producers and users of knowledge (who may overlap to a significant degree) are seen to greatly enhance program efficacy, particularly if undertaken before research is initiated, to refine research questions, influence methodologies, determine an appropriate form of delivery, and ensure that intended end-users have a degree of ownership of research outputs. In the context of the Australian environment, this is particularly relevant to respectful engagement with Indigenous Traditional Owners of Country. In such contexts, scientific inquiry may not be the only or even the most appropriate mode of knowledge production. Local, tacit, experiential and other forms of knowledge can emerge through various types of inquiry.

Of course useful research outcomes can and do occur without knowledge brokering, but they involve a greater element of chance which can and should be avoided, especially in times of constrained research funding and greater emphasis on accountability. It is doubtful that an organisation or research program can jump to sophisticated knowledge intermediary processes (the right hand side of Figure 2) without being competent at the basics of science communication: the ability to pick up research highlights early and
present them well; good web interface and search capabilities; effective media and events strategies; and the ability to synthesize research outputs in attractive ways targeted to the knowledge needs of intended audiences. This requires dedicated resources, recognised in the CERF-NERP requirement to allocate at least ten percent of budget to communication and knowledge brokering processes.

In designing transdisciplinary, multi-institutional environmental research programs for impact, we need to understand the knowledge system we are seeking to influence. This means more than researchers understanding their market, which is weakest with the Indigenous sector. Our key point, exemplified by the experience of the CERF and NERP hubs, is that such research is a shared enterprise between researchers, funders and end users, built on a platform of shared goals and social capital across these three functional domains.

Figure 1 illustrates that continuity is an important attribute for all three groups. With sufficient continuity of personnel across the collaboration, elements of social capital such as trust and reciprocity become increasingly valuable as collaborations evolve and mature. Extended interaction over a number of years bridges the cultural differences between the different worlds of researchers and end users, it helps researchers to understand the needs of end users, it makes it easier for end users to challenge researchers and to interrogate research findings more freely, and it gives funders more confidence to invest in possibly riskier, less well-defined or more adaptive projects in a spirit of co-learning. The latter is facilitated when the funding body is also an end user, as the Australian Department of the Environment was with respect to the CERF and NERP programs.

It is now all too common in Australia for research programs to be funded for four years or less, which makes it difficult to sustain continuity of personnel and to build social capital (familiarity, respect, trust, reciprocity) between funders, researchers and end users. So the fact that five CERF hubs were successful in a national competitive funding round and hence became NERP hubs was very important in the evolution — and we would argue the success — of this overall investment.

The scale and complexity of ‘wicked’ environmental problems requires both a transdisciplinary approach and sustained effort. Within the Tropical Ecosystems NERP Hub, several research projects required at least ten years of sustained work to be useful, for example: (a) problems that require temporal data to track the response of an ecosystem
after a management intervention such as rezoning or an extreme weather event; and (b)
complex problems such as coastal water quality that have been attacked in bite-size (i.e.
fundable) portions.

However it is important to note that continuity of funding for five hubs from CERF to
NERP was by no means deliberate or guaranteed. In fact there was a funding gap between
CERF and NERP, during which many CERF-funded researchers on short-term contracts
moved on to other roles, thus undermining staff continuity and hub cohesion in the
transition to NERP. Both the CERF and NERP programs began with competitive funding
processes, subject to normal Commonwealth procurement rules around contestability and
competitive neutrality (DoF, 2014). Under such rules, against a background of three-year
electoral cycles and budget processes, designing and sustaining long-term transdisciplinary
research investments is inherently difficult. Two CERF hubs that were seen by the
Department as being highly relevant and effective (focused on taxonomy and marine
mammals), were not funded under NERP, due to revised government priorities for the
program and alternative funding sources.

The reviews of the CERF (Urbis, 2010) and NERP (Spencer et al., 2014) programs
revealed that the hubs’ flexibility and responsiveness to identify research topics in detail
with their research users enabled them to address environmental issues in their specific
contexts, at the appropriate scales and with objectives relevant to research users.

Importantly, funding contracts with most of the NERP hubs were signed before all
research projects were designed and specified in detail. Whether deliberate or not, the
flexibility allowed to these NERP hubs in terms of refining research methods and detailed
research programs and projects in response to end user needs, turned out to be one of the
strengths of the program. Stakeholders and research users had a meaningful opportunity to
influence the research direction and allocation of funds once the hubs became real and
people were seriously engaged, rather than ‘joining in’ to established research projects
after they had already been designed and funds already committed. As well as improving
the relevance and impact of research outputs for users, in the opinion of the manager of the
CERF and NERP programs within the Department of the Environment, this ability to be
flexible and responsive ‘contribute to a positive cultural change to problem solving
between researchers and the Environment Portfolio’.
Where research programs were specified in detail and contracted as such from the outset, subsequent lack of flexibility became a problem as it constrained meaningful consultation with end users, which was especially problematic for Indigenous interests.

Political scientist Brian Head (2008) argues that in modern pluralist democracies, the response to any given policy problem is ultimately informed by the interplay between three distinctly different types of knowledge and evidence, as illustrated in Figure 3.

Figure 3: Three lenses of knowledge and evidence through which public policy is informed
(after Head, 2008)

In this formulation, scientific research is one ‘lens’ through which Ministers and their advisers seek to understand an issue, weighed up against political judgment and the organizational knowledge, corporate memory and professional practices of relevant agencies. Each lens has a distinctive epistemology — in effect polarized by its own context and experience. Evidence that may seem compelling viewed through one lens may be virtually invisible, unconvincing or rejected through another. For example, research and independent inquiries might produce evidence that pricing instruments (e.g. carbon pricing) are economically efficient means of achieving a desired policy outcome (e.g. reductions in net greenhouse gas emissions), but such evidence may be ignored, contested or rejected through an ideological political lens if election commitments have explicitly and vociferously ruled out pricing carbon.

However if researchers, funders and end users are working closely together in a joint enterprise with shared goals and a high level of social capital, and if program design pays close attention to the accountabilities in Table 2, then over time the overall program is
more likely to be seen as useful and hence influential through all three lenses. Ministers and their officers seek feedback from clients and end users in making political judgments, and active engagement of civil servants with research programs is likely to accelerate osmosis from research findings into organizational knowledge. A well-designed and managed transdisciplinary research program is more likely to position itself in the ‘sweet spot’ in the centre of Head’s Venn diagram than more conventional approaches wherein scientists carry out research in isolation, then publish their findings in academic journals, then lament the lack of uptake in policy. An anonymous reviewer of this paper put it well: “engagement, dialogue, planning etc all help to shift the polarities so that everyone can see the sweet spot.”

The Australian science ministry examined the use of science in policy development in the Australian public service (DIISRTE, 2012) and concluded that the five key challenges to the use of science in policy development in the Australian public service are ‘timeliness, cultural differences, relationships, timeframes and access to data and information’. A senior environmental policy maker at the workshop noted that the CERF-NERP programs “have been significant in building strong relationships between environment portfolio staff and researchers. But maintaining enduring relationships, particularly in the face of churn and changing priorities, remains a challenge.”

As noted at the bottom of Box 1, and consistent with DIISRTE (2012), reward systems for researchers and policy makers differ markedly. The timeframes within which policy decisions need to be made are usually much shorter than a typical research project. Consistent with the doctrine of New Public Management (Hood, 1991), the Australian public sector is characterised by ‘churn’ or frequent turnover of personnel, a suspicion of deep subject matter expertise, preference for generic process skills and a default tendency to assume that any services can simply be purchased through competitive tendering processes. Consequently it is difficult and rare for staff inside government agencies to build sufficient domain expertise and/or researcher contacts to be able to understand, articulate or interrogate research needs, or to wish to be involved in iterative development of research programs through negotiation with researchers and end users.

In our experience these factors are prevalent across the modern public sector in Australia at all levels of government. They work against effective transdisciplinary research to inform policy.
Paradoxically, they also make investment in such research more essential.

We found the framework developed by Roux et al. (2010) to be a useful starting point for framing a structured reflection among experienced research leaders to elicit lessons learned from the collective experience of five national research hubs over eight years.

There is a high level of consensus among the leaders of multi-institutional, transdisciplinary environmental research programs in Australia that the chances of such research influencing and improving policy are maximised when research investments are designed such that funders, end users and researchers have shared goals, sufficient continuity of personnel to build trust and sustain dialogue throughout the research process from issue scoping to application of findings, and sufficient flexibility to be able to adjust and respond to new knowledge, changing circumstances and priorities. These design criteria are important for all three functional domains of researchers, end users and funders. Other accountabilities proposed by Roux et al. (2010) were also important for one or two functional domains as outlined in Figure 1.

As this paper was being finalised, the Australian government was evaluating proposals for research hubs against six national environmental research priorities, for a new six-year $125m National Environmental Science Programme (NESP) from 2015. In a two-stage process, the detail of hub research plans is to be worked out through negotiation between the Department of the Environment and successful proponents in consultation with end users, with the Department acting as both a funder and end user. Hopefully that process will be characterised by shared goals, dialogue, trust, continuity and flexibility across researchers, funders and end users, extending from the planning phase over the six years of the Programme. It is encouraging that many of the lessons from CERF and NERP distilled in this paper appear to have informed the design of the NESP.

The diverse operating models of research hubs in the CERF and NERP prove that there is no single magic formula for the design and governance of multi-institutional, transdisciplinary environmental research programs. In spite of this, there are important design criteria that all players – researchers, funders and end users – need to keep in clear focus as research investments are planned and implemented in order to realise an environmental benefit that exceeds the cost of the research.
6. Acknowledgements

This paper arose from a workshop in April 2014, held at Bungendore, New South Wales, that was funded and facilitated by the Australian Centre for Environmental Analysis and Synthesis (ACEAS), a facility of the Terrestrial Ecosystem Research Network (TERN) funded by the Australian Government National Collaborative Research Infrastructure Strategy (NCRIS). The research collaborations analysed here were largely funded by the Australian Government’s Commonwealth Environmental Research Facilities (CERF) program and the National Environmental Research Program (NERP). The comments of three anonymous reviewers were helpful in sharpening our intent and key points.

7. References

Online resource available at:

Canadian Health Services Research Foundation. The theory and practice of knowledge brokering in Canada's health system. 2003. Ottawa, CHSRF.

and their antecedent hubs of the Commonwealth Environmental Research Facilities (CERF) program

<table>
<thead>
<tr>
<th>Hub</th>
<th>Research Focus</th>
<th>Scientific disciplines</th>
<th># research providers*</th>
<th># researchers</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>NERP Environmental Decisions Hub (CERF Applied Environmental Decision Analysis)</td>
<td>Understanding major biodiversity drivers to maintain ecosystems and maximise their resilience against human impacts</td>
<td>Climate science, Ecology, Economics, Public policy</td>
<td>9 Core partners: ANU, CSIRO, NSWOEH, PV, RMIT, UMelb, UQ, UWA, VDEPI</td>
<td>108</td>
<td>118</td>
</tr>
<tr>
<td>NERP Landscape and Policy Hub (CERF Landscape Logic)</td>
<td>Retrospective evaluation of the impact of public environmental funding. Regional scale assessment of biodiversity including social and institutional drivers and functional attributes.</td>
<td>Geography, Climate science, Ecology, Economics, Hydrology, Public policy, Social science</td>
<td>7 Core partners: ACE, ANU, CSIRO, CSU, GU, MU, UTAS</td>
<td>58</td>
<td>37</td>
</tr>
<tr>
<td>NERP Marine Biodiversity Hub</td>
<td>Provision of biodiversity and baseline data to underpin marine decision making, particularly in</td>
<td>Earth science, Fisheries, Marine biology, Oceanography</td>
<td>7 Core partners: AIMS, CDU, CSIRO</td>
<td>45</td>
<td>102</td>
</tr>
<tr>
<td>(CERF Marine Biodiversity Hub)</td>
<td>reference to marine bioregional planning, protected areas and natural resource management</td>
<td>Public policy</td>
<td>Remote sensing</td>
<td>GA</td>
<td>MVic</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>---------------</td>
<td>---------------</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>NERP Northern Australia Hub (CERF Tropical Rivers and Coastal Knowledge)</td>
<td>Improvement of biodiversity outcomes in northern Australian terrestrial, freshwater and estuarine systems. Combining biodiversity monitoring and reporting with adaptive planning and community based natural resource management to improve biodiversity outcomes and Indigenous livelihoods.</td>
<td>Agricultural science</td>
<td>Ecology</td>
<td>Limnology</td>
<td>Marine biology</td>
</tr>
<tr>
<td>NERP Tropical Ecosystems Hub (CERF Marine and Tropical Sciences Research Facility)</td>
<td>Improvement of scientific understanding and environmental decision making in far north Queensland with particular reference to the Great Barrier Reef, rainforests of the Wet Tropics and Torres Strait.</td>
<td>Climate change</td>
<td>Ecology</td>
<td>Fisheries</td>
<td>Limnology</td>
</tr>
<tr>
<td>NERP Tropical Ecosystems Hub</td>
<td>Improvement of scientific understanding and environmental decision making in far north Queensland with particular reference to the Great Barrier Reef, rainforests of the Wet Tropics and Torres Strait.</td>
<td>Climate change</td>
<td>Ecology</td>
<td>Fisheries</td>
<td>Limnology</td>
</tr>
<tr>
<td>Australian Government</td>
<td>$65.7m</td>
<td>Co-Contributions: $78.4m</td>
<td>Total: $144.1m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Australian Government</td>
<td>Partners</td>
<td>TOTAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$69.16m</td>
<td>$71.2m</td>
<td>$140.36m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$90.86m</td>
<td>$83.4m</td>
<td>$174.26m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>591</td>
<td>558</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$160.02m</td>
<td>$154.6m</td>
<td>$314.62m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>