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An ectotherm’s performance and physiological function are strongly
tied to environmental temperature, and many ectotherms thermoregulate
behaviourally to reach optimum body temperatures. Tropical ectotherms
are already living in environments matching their thermal tolerance range
and may be expected to conform to environmental temperatures. We
tracked the body temperatures (Tb) of 163 estuarine crocodiles across 13
years and compared Tb of 39 crocodiles to water temperature gathered
using fish-borne sensors (Tw) across 3 years (2015–2018). While Tb largely
conformed closely to Tw, we found inter- and intra-individual differences
in relative body temperature (Tb–Tw) that depended on sex and body size
as well as the time of day and year. Deviations from Tw, especially during
the warm parts of the year, suggest that thermoregulatory behaviour was
taking place: we found patterns of warming and cooling events that seemed
to mediate this variation in Tb. Thermoregulatory behaviour was observed
most frequently in larger individuals, with warming events common
during winter and cooling events common during summer. By observing
free-ranging animals across multiple years, we found that estuarine
crocodiles show yearly patterns of active cooling and warming behaviours
that modify their body temperature, highlighting their resilience in the face
of recent climate warming. Our work also provides the first evidence for
thermal type in large-bodied reptiles.

1. Introduction
The rate and effectiveness of biological functions are directly influenced by
body temperature, and so changes in temperature can affect fitness. Ecto-
therms depend on external sources of heat, and so their body temperature and
physiological performance are strongly linked to environmental temperatures
[1,2]. To mitigate the potential negative impacts of unfavourable environmen-
tal temperatures, individuals should seek to maintain their body temperature
within their optimum range either by acclimatizing (reversibly adjusting their
thermal sensitivity) to environmental temperatures or by thermoregulating
behaviourally [3]. Behavioural thermoregulation allows ectothermic animals
to select favourable thermal microclimates, and many studies in temperate
environments have demonstrated that small-bodied reptile species will bask
to reach thermal optima that are higher or lower than ambient environmen-
tal conditions [4–7]. These species can often maintain relatively stable body
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temperatures by taking advantage of warming or cooling sources in their environment [7,8].
In tropical latitudes, reptiles frequently live in thermally stable environments with ambient temperatures equal to or

greater than their optimal range [9,10]. As such, it has been hypothesized that tropical species can maintain relatively stable
body temperatures without the need for behavioural thermoregulation by allowing their body temperature to conform to
ambient temperatures (i.e. thermoconformity) [11–13]. Even so, the selection of cool microclimates is often necessary to prevent
overheating during the heat of the tropical summer [12,14,15]. As these organisms are likely already living at the higher end
of their thermal tolerance range, and due to constraints on biochemical processes, they may have a limited capacity to adapt to
warmer temperatures within the time frame of anthropogenically induced climate change [9,10,16], which is predicted to result
in warmer average temperatures and additional climate variabilities such as extreme weather events [17].

Recent studies have begun to document that body temperature may vary among individuals in a population (i.e. inter-indi-
vidual variation in body temperature), with some individuals consistently seeking warmer or cooler temperatures than their
conspecifics across spatial and temporal contexts. These differences may be related to intrinsic differences such as sex or
body size [11,18]. Female ectotherms, for instance, have been shown to seek warmer temperatures, particularly around the
breeding season, to provide the energy required to reproduce [11]. Larger individuals have also been shown to exhibit greater
thermal inertia and tend to cool down more slowly [18]. Even social status has been shown to influence thermoregulatory
behaviour through the exclusion of subordinates from basking spots [4,19]; thus, the body temperature of some individuals
should vary more than others (i.e. intra-individual variation in body temperature). These differences may also be influenced
by personality (consistent individual differences in a trait). While the personality of classic traits such as activity and boldness
is well established [20–22], the personality of thermal type and thermoregulatory behaviour is only beginning to be studied
[21,23–26]. If individuals in a population do maintain consistent differences in their body temperature, then they must do this
by thermoregulating towards their target temperature across geographical and seasonal shifts in environmental temperatures.
While much research into thermoregulatory behaviour has been conducted on small, temperate ectotherms [13], less is known
for larger, long-lived species in tropical latitudes. Furthermore, it is often difficult to account for inter- and intra-individual
variation in thermal type due to the logistical difficulties of tracking individuals and their surrounding thermal environment at
the spatial and temporal scale or grain at which they interact with the environment [27].

Estuarine crocodiles Crocodylus porosus are large, long-lived ectotherms that are widely distributed around the equator
(figure 1). They have been observed shifting between land and water to buffer against daily and seasonal temperature
fluctuation [19,29]. Juveniles in laboratory conditions have been shown to maintain performance across a broad variety of
temperatures through thermal acclimation [30] and have demonstrated a substantial ability to maintain their aerobic scope
under climate change-like temperatures (34°C) through acclimation [31]. However, they show reductions in both swimming and
diving performance above 32–33°C, a temperature that is commonly exceeded across their range [30,32,33]. Estuarine crocodiles
undergo a 20-fold increase in body size over their lifetime, and so mature animals are expected to interact differently with their
thermal environment. However, due to the difficulty in recording the body temperature of mature crocodiles in the wild, where
they are exposed to natural temperatures and temperature fluctuations, their range of inter- and intra-individual variation in
thermal type has not been investigated.

In this study, we aimed to quantify long-term variations in body temperature and observe patterns of thermoregulatory
behaviours in wild estuarine crocodiles. To achieve this, we collected 13 years of body temperature data (Tb) from 163 wild
estuarine crocodiles surgically implanted with temperature-sensitive acoustic transmitters. To measure water temperature (Tw)
at the same spatial and temporal scale as the tagged crocodiles, we also utilized acoustically tagged sharks, rays and bony
fishes (52 individuals; five species) as animal-borne temperature sensors [27,34]. Our aims were as follows: (i) investigate
to what degree individuals conformed to Tw by analysing inter- and intra-individual variation in Tb relative to Tw, (ii)
investigate whether patterns of warming or cooling indicative of thermoregulation are present, and (iii) determine whether
thermoconformity or thermoregulation change through time or with an individual’s body size or sex. We hypothesized that
large males would have the warmest body temperatures, due to their high thermal inertia and high social rank allowing them
preferential access to basking areas. Additionally, we hypothesized that basking would be most frequent during the winter
months, while crocodiles would seek to remain cool during the summer.

2. Methods
(a) Study site, crocodile capture and sampling
This study was conducted in the Wenlock River, Cape York, Australia (figure 1). This region experiences a warm wet season
from November to April (25–39°C) and a cooler dry season from May to October (20–34°C). Between 2008 and 2021, up to 20
crocodile traps were deployed along a 47 km stretch of the Wenlock River. Traps were set between August and September each
year and either floated on the water surface or were placed at the high-tide mark along the riverbank. Traps were baited with
wild pig (Sus scrofa) or cow (Bos taurus), with the trap door sprung by a trigger mechanism attached to the bait. For individuals
less than 2 m in total length, hand capture via spotlighting with a lasso was also used.

(b) Remote monitoring of crocodile temperature
To track the body temperature (Tb) of individual crocodiles remotely across multiple years (max = 10 years), coded acoustic
transmitters (V13T or V16T; https://www.innovasea.com/) were implanted into captured crocodiles following Franklin et al. [35].
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These acoustic transmitters contain inbuilt temperature sensors that allow the remote monitoring of crocodile presence and
temperature over multiple years (max = 10 years). In brief, a local anaesthetic (lignocaine with adrenaline) was injected behind
the left forelimb, and a small pocket formed under the skin with blunt-ended scissors, into which the acoustic transmitter
was inserted and placed on top of skeletal muscle. The incision was closed using monofilament sutures and sprayed with
antibiotic. As these sensors were implanted close to muscle, they may not accurately reflect the core body temperature of very
large individuals with a greater internal thermal gradient but rather a value between the core body temperature and local
environmental temperatures. While crocodiles were restrained, sex, total body length (TL), snout–vent length (SVL) and tail
girth were also recorded before individuals were released at their point of capture.

To detect the implanted transmitters, an array of acoustic receivers (VR2-W; https://www.innovasea.com/) was deployed
throughout the Wenlock River for the duration of the study. These receivers were spaced approximately 1–5 km apart and were
attached to concrete anchors positioned approximately 1–2 m below the water surface and 2–20 m from the riverbank. Each
receiver had a detection radius of 200–700 m. As the river width was typically less than 100 m and pulse transmission rate of
the acoustic tags was set randomly between 90 and 120 s, it was unlikely that crocodiles could pass by a receiver without being
detected.

Individuals with fewer than 30 days of detections, or fewer than 100 detections overall, were excluded, as were erroneous
readings (for instance, less than 10°C). Some data from 15 individuals, as well as all data from three individuals, were removed
due to rapid, progressive drops in temperature to 0°C that were not replicated in either the water temperature or the Tb of other
tagged crocodiles at the time.

(c) Environmental temperature data
Local water temperatures represent the operative temperature for exclusively aquatic ectotherms [36], and so we obtained
approximate water temperature from coded acoustic transmitters (V13T) implanted into free-swimming fish and sharks
(barramundi Lates calcarifer (n = 10, 0.45–1.06 m total length), bull sharks Carcharhinus leucas (n = 15, 0.78–1.18 m total length),
speartooth sharks Glyphis glyphis (n = 8, 0.64–1.43 m total length), estuarine whipray Urogymnus dalyensis (n = 7, 0.49–1.13 m total
length) and warrior catfish Hemiarius dioctes (n = 12, 0.49–1.04 m total length)) detected on the same array of acoustic receivers
[37,38].

As almost all fish are obligate thermoconformers [39], and the flowing and tidal Wenlock River lacks a significant thermal
gradient (electronic supplementary material, figure S1), these readings were accurate to the actual water temperature of the
river, as derived from three instream temperature recorders (Star-Oddi conductivity, salinity and depth loggers (CTDs)) which
were in place from October 2015 to 2016 (figure 1). Individuals within fish species conformed to water temperatures and
did not show individual specialization in thermal type (electronic supplementary material, figure S2). All fish temperature
recordings were within 3.1°C of CTD recordings made within the same 3 h period and within 3 km of each other, and 90%
of fish recordings were within 1.1°C of CTD recordings. We used fish body temperature (hereafter Tw) to approximate water

(b)
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Figure 1. (a) The acoustic array on the Wenlock and Ducie Rivers, Cape York, Queensland, Australia, showing the locations of the acoustic receivers as yellow circles,
crocodile capture sites as blue squares and fish capture sights as red triangles. Conductivity, temperature and depth loggers (CTDs) are represented by black crosses.
(b) Maximum temperatures reached across the global distribution of estuarine crocodiles C. porosus. Temperature data come from WorldClim [28] and represent the
maximum yearly temperature reached from 1970 to 2000, at a resolution of one pixel per 170 km2.
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temperature for years when there was sufficient data (2015–2018, more than 100 000 recordings per year), and erroneous
readings were excluded as with the crocodiles.

To calculate the relative temperature of crocodiles to their environment (Tr), we matched the mean Tb of each crocodile
within a fixed 3 h window to the mean Tw recorded at the same acoustic receivers as the focal crocodile within the same
window. This 3 h window was chosen to allow within-day variation in Tr to be observed, while maximizing the overlap
between Tb and Tw recordings. Tr was then calculated as Tb–Tw.

(d) Inter- and intra-individual variation and plasticity of crocodile temperature
All statistical analyses were conducted using the R statistical software v. 4.3.1 [40]. We constructed a double-hierarchical
generalized linear model (DHGLM) following the methods of Hertel et al. [41] and using the ‘brms’ R package [42], to determine
whether there were inter-individual differences (behavioural type (BT)) or intra-individual differences (residual intra-individual
variation (rIIV)) in Tr. We also estimated the correlation between BT and rIIV. The DHGLM was run with uninformative
priors. Four chains were run for a total of 8000 iterations, of which 6000 comprised the warm-up period. The ‘mean model’
component of the DHGLM consisted of Tr as a response variable. Month was included as a nonlinear second-order polynomial
term to account for the cyclical fluctuation of temperature through the year, while time of day (grouped in 3 h windows) was
included as a factor to account for the irregular shape of the diurnal cyclical pattern of temperature. Crocodile body size or
sex was included as a fixed effect with four levels comprising females (n = 12, SVL 410–1648 mm), small males (n = 9, SVL <
1470 mm), medium males (n = 9, 1470 mm ≤ SVL < 1700 mm) and large males (n = 9, 1700 mm ≤ SVL < 2510 mm). The size
categories for males match with size at maturity (approx. 1500 mm SVL; [43]) and with known shifts in movement strategy [44].
Random intercepts for both individual ID and month within study year were included. The ‘dispersion model’ component of
the DHGLM consisted of the standard deviation of Tr fitted against a random intercept for individual ID, with body size or sex
included as a fixed effect.

The repeatability of Tr was calculated as R = IDvarTOTALvar , where IDvar is inter-individual variation, and TOTALvar is

the sum of IDvar, between-year variation, month-within-year variation and residual variation. The predictability of Tr was

estimated using the coefficient of predictability (CVp), calculated as CVP = exp ωID2 − 1, where ωID is the estimate of individual
differences in residual variation. After BT and rIIV were extracted, rIIV was back transformed to the original scale by adding
population-level mean residual variance and taking its exponent.

(e) Identification of warming and cooling periods
We expect that crocodiles that never leave the water will largely conform to water temperature, although this will be influenced
by thermal inertia related to body size. However, crocodiles are known to behaviourally modify their body temperature by
leaving the water and either warming in the sun or cooling evaporatively in the shade [19]. Individuals that are out of the water
(e.g. on the riverbank or mudflat) are unable to be detected by the acoustic array until they return to the water. To identify
potential periods of thermoregulation, we used the R package ‘VTrack’ [45] to search for instances in our dataset (2008−2022;
163 individuals) when a tagged crocodile was not detected for periods ranging between 30 min and 24 h and had a Tb that was
either warmer or cooler by a threshold value (1.3°C) than before this interval (figure 2). This threshold was calculated as the 99%
highest residual Tr. The total number of events per individual per month was then calculated. We used the R package ‘mgcv’
[46] to build four generalized additive models, two each for warming and cooling events, and males and females, to visualize
the relationship between events and time of year. The months of February–April were not included in this analysis due to a low
number of crocodile detections associated with wet season flooding. The number of basking events per month, fitted using a
Poisson distribution, was the response variable, with month of the year and body size as continuous predictors fitted using a
tensor product spline with k set between 4 and 9 and individual ID as a random effect.

3. Results
Between August 2008 and September 2022, 223 crocodiles (0.56–4.69 m TL) were captured on the Wenlock River and implanted
with acoustic tracking devices. Of these, 163 individuals (0.84–4.67 m TL) had sufficient data (body temperature recorded
at least 100 times over at least 30 days) to be included in the analysis for warming and cooling events, and 39 individuals
(0.84–4.64 m TL) could be matched with fish temperature data gathered concurrently between 2015 and 2018 to be used in the
analysis of thermal type. Crocodile Tb was found to match closely to Tw values, and both Tb and Tw followed cyclical seasonal
trends, with the warmest temperatures occurring in January and the coolest temperatures in July. However, there was more
variation in Tb than in Tw (figure 3); Tb ranged from 21.0 to 39.9°C whereas Tw ranged from 24.0 to 34.8°C, and crocodile body
temperature varied by up to 4.55°C warmer or 4.08°C cooler than the local water temperature.

(a) Inter- and intra-individual variation and plasticity of body temperature
Crocodiles were, on average, 0.34°C cooler than the local water temperature. As this was less than the 0.5°C temperature sensor
accuracy reported by the acoustic tag manufacturers (Innovasea), this variation may simply represent transmitter error. In one
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crocodile dual-tagged with two acoustic transmitters between September 2010 and April 2012, 100% of co-detections occurring
within a 30 min period were within 0.42°C, and 90% were within 0.17°C, suggesting a greater degree of accuracy. The coolest
individual in our dataset was on average (±standard error) 1.33 ± 0.05°C cooler than the water, and the warmest individual was
on average 0.47 ± 0.18°C warmer than the water (figure 4).

We found distinct inter-individual differences in Tr, with 46% of variation in Tr attributed to individual differences (R =
0.455 ± (0.162, 0.672); figure 4). A three-way interaction between body size, time of year and time of day was supported (figure
5). When controlling for time of year and time of day, large males (greater than 1700 mm SVL) were the warmest group, and
medium males (1470–1700 mm SVL) were the coolest. Crocodiles were never warmer than the water, but females, small males
(less than 1470 mm SVL) and large males were generally cooler than the water during the mornings of hotter months (figure
5a,b,d; see electronic supplementary material, table S1 for estimates and credible intervals of each combination of size or sex,
time of day and time of year). Medium male Tr was less than zero for most of the year, except for during the late night (figure
5c).

The mean residual standard deviation in Tr was 0.38°C, and there was significant intra-individual variation in Tr (CVp: 0.584
[0.434, 0.773]; figure 5b), though an individual’s degree of variation was not influenced by its sex or body size and did not
correlate with its Tr (table 1).

(b) Warming and cooling events
Warming or cooling events were defined as instances when tagged crocodiles were not detected for a period of 30 min to 24 h
and became warmer or cooler by a threshold value following this absence. On average, crocodiles were not detected for 7.6 h
(7.5 h for cooling or 7.9 h for warming) and once detected, returned to within 1°C of their original body temperature in 1.9 h (1.5
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Figure 2. Temperature recordings from two estuarine crocodiles C. porosus showing (a) a warming event (tag ID 3076) and (b) a cooling event (tag ID 3093). The
space between detections (yellow and blue rectangles) likely represented a period where the crocodiles were out of the water basking or actively cooling, as they were
unable to be detected during this time.
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h post-cooling or 2.3 h post-warming). A total of 3033 ‘warming’ and 3710 ‘cooling’ events were recorded across 163 crocodiles
from 2010 to 2022, with a mean of 3.05 cooling events per individual per month and 2.50 warming events per individual per
month. The greatest number of warming (n = 19) events were recorded from a large male crocodile (Tag ID = 11897; 2510 mm
SVL) in July of 2019, and the greatest number of cooling (n = 46) events was recorded from a small male (Tag ID = 3133; 1250
mm SVL) in December of 2021. This individual was restricted to a waterhole for much of the year, and so was picked up
consistently by the acoustic receiver at this location. Cooling events were most common in the early morning, peaking at 06.00,
while warming events were most common in the late afternoon, peaking at 19.00. As these events represent the timing of a
potential return to the water, the crocodile may have been basking for hours previously.

The smoothing parameter for the interaction between body size and time of year was significant for all four models (cooling/
female: edf = 10.42, Χ2 = 410.24, p < 0.001; warming/female: edf = 20.85, Χ2 = 164.70, p < 0.001; cooling/male: edf = 24.55, Χ2 =
524.07, p < 0.001; warming/male: edf = 16.83, Χ2 = 178.57, p < 0.001). Warming events were most common in July for both females
(figure 6a) and males (figure 6b). Very large males (greater than 2000 mm SVL) warmed the most frequently, and males with
1000–2000 mm SVL the least. Conversely, basking was positively correlated with SVL in females. Cooling events were most
common in November for females and December for males. Similarly, males with greater than 2000 mm SVL had the most
frequent cooling events among this cohort, while intermediate-sized males had the fewest cooling events. For females, cooling
was most common for individuals greater than 1200 mm SVL.
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Figure 3. (a) Scatter plot showing the relationship between the body temperature of 39 estuarine crocodiles C. porosus and their immediate water temperature as
determined using fish-borne temperature sensors. Crocodile and fish temperatures are joined by a shared location within a 3 h window. (b) The relationship between
tag temperatures for five fish species and the nearest instream temperature logger. The dashed lines show a 1 : 1 relationship between temperature values.
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4. Discussion
While ectotherms from the thermally stable tropics are likely to be living near their upper thermal limits, thermoregulation
may provide a buffer against unfavourable temperatures. By tracking the body temperatures of a population of wild estuarine
crocodiles over multiple years and using fish-borne temperature loggers to characterize local environmental conditions, we
found that tagged crocodiles mostly conformed to local water temperature but that their relative body temperature depended
on their sex and body size, as well as the time of day and time of year. Crocodiles of all sizes were often cooler than the water in
summer; periods of time when body temperature increased or decreased substantially relative to water temperature, suggestive
of behavioural thermoregulation, may have mediated this variability in temperature. Crocodiles were able to behaviourally
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thermoregulate to cool down in summer, as well as warm up in winter, and thermoregulatory behaviour was size-dependent,
with a greater frequency of both warming and cooling observed for larger individuals and very small individuals. These results
suggest that, while estuarine crocodiles mainly conform to water temperatures, they do have some capacity to elevate or lower
their body temperature at need.

While most obligate aquatic ectotherms must conform to local water temperatures [47–49], semi-aquatic ectotherms may
thermoregulate behaviourally by leaving the water to take advantage of solar radiation, evaporative cooling or ambient air
temperature to assist them in reaching a target body temperature [3,50,51]. We found that crocodiles mostly conformed to
water temperature, but we observed individual differences in Tr (body temperature relative to environment temperature) that
ranged from 1.33°C cooler to 0.47°C warmer than the water. There was also significant intra-individual variation in Tr, though
an individual’s degree of variation did not correlate with its Tr and was not influenced by its sex or body size. In contrast,
Horváth et al. [23] found that the thermal type (selected temperature) of common lizards Zootoca vivipara was negatively
correlated with its intra-individual variance, such that individuals selecting for higher temperatures were more predictable.
The largest crocodiles (i.e. males greater than 1700 mm SVL) tended to be warmest, and medium-sized males (1475–1700 mm
SVL) tended to be the coolest. This parabolic pattern of behaviour has also been observed in the diet [52] and movement
[44] of male estuarine crocodiles, with medium-sized males tending to be more nomadic and consuming prey of a higher
trophic level than both immature and large dominant males. Rather than reflecting a preference for warmer temperatures, the
warmer body temperature of large male estuarine crocodiles may simply be a consequence of their size: at upward of 500 kg,
these individuals have considerable thermal inertia, and their body temperature changes slowly. Grigg et al. [19] found that
an estuarine crocodile over 5.5 m in total length maintained stable temperatures at a daily scale, though not at a yearly scale.
However, our largest (greater than 1700 mm SVL males) crocodiles had a similar degree of intra-individual variation in Tr
than medium-sized males. This may be because none of our tagged crocodiles were above approximately 4.6 m in total length
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Figure 5. Body temperature (Tb) of estuarine crocodiles C. porosus (n = 39) relative to the water temperature (Tw) throughout the year. Crocodiles are grouped by body
size, with females, large males (greater than 1700 mm SVL), medium males (1470–1700 mm SVL) and small males (less than 1470 mm SVL). Coloured lines show
times of day when the slope of the relationship between temperature and time of year is nonlinear or different from 0. The black dotted lines show the relationship
between temperature and time of year for other times of day, while the grey dashed line shows when Tb = Tw. Grey dots are jittered raw data.

Table 1. Estimates and 95% credible intervals of random effects of estuarine crocodile C. porosus body temperature relative to local water temperature (°C) throughout
the year, based on a double hierarchical mixed model. Bolded estimates have credible intervals that do not overlap 0.

random effects estimate

s.d.intercept,crocodile ID 0.48 [0.37,
0.62]

ω2
crocodile ID 0.54 [0.40,

0.72]

rintercept(crocodile ID)–ω(crocodile ID) 0.06 [−0.31,
0.43]

s.d.intercept,year 0.40 [0.12,
1.24]

s.d.intercept,year : month 0.06 [0.04,
0.09]
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(largest 4.64 m TL) and due to differences in our methodologies. While Grigg et al. [19] measured core body temperature with
ingested radio transmitters, our acoustic transmitters were implanted close to the surface (approx. 8–12 mm) and measured
peripheral body temperature, so may have experienced greater temperature fluctuations. A difference of 1–2°C has been
observed between the core and peripheral temperatures of mature American alligators, Alligator mississippiensis [53].

Individual differences in thermal preference have been well documented for several species of lizard and fish in a laboratory
setting [21,24,54–56]. For ectotherms with the mass, and therefore thermal inertia, of crocodilians, selecting for and maintaining
preferred temperatures through thermoregulation may be impractical. Laboratory studies of thermal preference often involve
an artificial temperature gradient [21], but there was little observed change in water temperature with either depth or upstream
extent in our Wenlock River study system (electronic supplementary material, figure S1), and so our population of estuarine
crocodiles lacks a significant temperature gradient to navigate while submerged. Rather, individuals conformed to water
temperatures, though Tr depended on body size or sex, the time of year and the time of day, such that individuals were cooler
than the water on summer mornings or midday and matched water temperature the rest of the time. These deviations of Tr
may be linked to behavioural thermoregulation, though individuals that were warmer did not necessarily bask to warm up
more than others (electronic supplementary material, figure S3). It is possible that additional factors are contributing towards
the differences observed. If these temperature differences are capturing distinct thermal preferences rather than intrinsic factors,
these differences may also be linked to personality type. Because of the central role temperature plays for ectotherms, integrat-
ing thermal type and thermoregulatory behaviour into the study of ectotherm personality is an area of growing interest. A
thermal-behavioural syndrome, linking thermal preference, thermoregulatory behaviour and personality traits such as boldness
and activity, has been demonstrated for the delicate skink Lampropholis delicata [24,25]. Within this syndrome, individuals
who preferred warmer temperatures were often more bold, explorative and active than others [24,25]. A similar pattern of
warmer individuals tending to be more active and bold was found in common lizards, with bolder individuals theoretically
more inclined to bask (warm) in the face of predator risk [23]. While this is difficult to show in the field, the development
of animal-borne sensors with accelerometer, temperature and pressure sensing technologies could be used to investigate the
relationship between thermal preferences and activity or diving behaviour in wild crocodiles.

For large ectotherms such as estuarine crocodiles, thermoregulation may be ineffective for reaching a target temperature.
Adult female northern map turtles Graptemys geographica were unable to reach the same peak temperatures while basking as
adult males, due to their significantly larger size and greater thermal inertia, resulting in a decreased effect of thermoregula-
tion [57]. Crocodilians may instead seek to raise or lower their body temperature in the short term, for example, to aid in
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digestion [58], to optimize performance upon their return to water and to buffer against environmental extremes. Seebacher
et al. [59] found that temperate-living alligators were mostly thermoconformers, relying on acclimatization to compensate for
temperature changes, but were nonetheless warmer than expected in winter and colder than expected in summer. We observed
more cooling events in summer, and more warming events were in winter, which may explain why tagged crocodiles were
slightly cooler than water temperatures during the morning and middle of the day in summer but otherwise tended to conform
to water temperature. Using focal observations of 11 estuarine crocodiles in a naturalistic setting, Grigg et al. [19] found that
crocodiles spent most time out of the water on summer nights (when the air was cooler than the water) and during winter
days (when solar radiation provided warmth). Our study suggests that these behaviours may be common in wild estuarine
crocodiles. Although behavioural thermoregulation may offer a physiological advantage to ectotherms, basking can reduce the
time available for important behaviours that require submersion (e.g. feeding, territory defence and reproduction) and can
expose individuals to agonistic interactions with conspecifics [60]. Dominant male crocodiles have been observed harassing
smaller mature males away from basking spots, resulting in these smaller males having the most variable body temperatures
[19,29]. While we found medium males were frequently cooler than large, presumably dominant males, their intra-individual
variance in body temperature was not greater. Conversely, dominant male Australian water dragons Intellagama lesueurii bask
less due to time spent defending their territories [4]. We found a general trend of larger crocodiles (both male and female)
basking more frequently than medium crocodiles, though warming and cooling events were also frequently recorded for
immature males.

While it is likely that the periods of warming and cooling observed are representative of behavioural thermoregulation,
the existence of thermoregulation cannot be verified without the associated behaviours being observed. The use of basking
behaviour to warm up is well established in crocodilians [3,5,19,59], and in our own study, estuarine crocodiles on the Wenlock
River were often observed basking in the sun on riverbanks and mudflats during the cooler July and August. Cooling behaviour
is more difficult to observe because it may take place underwater, away from the river proper or at night. The ability to cool
behaviourally or access cool refugia is essential for tropical ectotherms exposed to high temperatures [14,15,61]. Some fish
species have been observed to take advantage of layers of warmer and cooler water in order to thermoregulate [56,62]. Male
tropical fiddler crabs Austruca mjoebergi rely on shaded microclimates to remain active throughout the day [61], while mountain
lizards Eurolophosaurus nanuzae use the cool wind to prevent overheating [7]. Nocturnal basking has recently been described in
freshwater turtles and has been linked to species occurring in tropical and subtropical regions and to warmer parts of the year
[63,64]. The Wenlock River is shallow for most of the year (max depth = approx. 10 m) and does not appear to be thermally
stratified (electronic supplementary material, figure S1). As such, it seems unlikely that crocodiles were taking advantage of
deeper water to cool down. Instead, they may have been cooling evaporatively [65], lying in the shade or in cool freshwater
runoff from local springs or basking at night. Our crocodiles were detected more frequently after a cooling event at 06.00 and
after warming at 19.00, so nocturnal basking may be a primary mechanism of behavioural cooling. Future work linking the
verified presence of nocturnal basking to drops in body temperature is required to determine exactly how and when estuarine
crocodiles cool down.

To conclude, by using a long-term dataset of estuarine crocodile body temperature, we found that estuarine crocodiles
typically conformed to water temperatures but employed both warming and cooling behaviours throughout the year. The
existence of cooling behaviour means that crocodiles may have the means to compensate behaviourally for increases in
temperature associated with climate change, alongside physiological compensation. We also found consistent inter- and
intra-individual differences in body temperature, which may have been mediated through thermoregulatory behaviour or
through body size and sex. This contributes toward the growing field of thermal personality and provides the first evidence of
individual differences in thermal type in a large-bodied reptile. These findings support the idea that thermoregulation plays a
less important role for crocodilians than for other reptiles and that basking to warm up is an equal priority to cooling down for
tropical ectotherms.
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